- 2025数学建模美赛——神经网络预测模型详解
前程算法屋
数学建模教程数学建模神经网络人工智能
2025数学建模美赛——神经网络预测模型详解一、神经网络预测模型基础1.1、神经网络概述神经网络是一种模拟人脑神经元工作方式的计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接权重相互连接。这种模型能够进行复杂的非线性数据处理,通过调整连接权重,可以从数据中学习到复杂的模式和关系。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理,输出层则给出模型的
- fit_transform,fit,transform区别和作用
浊酒南街
#机器学习深度学习人工智能
目录前言fit,transform,fit_transform函数介绍函数使用示例前言sklearn中封装的各种算法调用之前都要fit。fit相对于整个代码而言,为后续API服务,用于从一个训练集中学习模型参数,包括归一化时要用到的均值,标准偏差。fit之后,可以调用各种API方法,transform是其中之一。所以当你调用transform之外的方法,也必须要先fit。但是fit与transfo
- js第一次笔记
chen_zhi_yu
javascript笔记前端
JavaScript显示方案JavaScript能够以不同方式“显示”数据:使用window.alert()写入警告框使用document.write()写入HTML输出使用innerHTML写入HTML元素使用console.log()写入浏览器控制台JavaScript关键词JavaScript语句常常通过某个关键词来标识需要执行的JavaScript动作。下面的表格列出了一部分将在教程中学到
- 【Python】Python之列表List添加插入元素
mjiansun
Python
本文代码上下文person_dev_group=["徐强","倍总","航神"]第一种方式:append()方法说明:list的实例方法append(),会在list的尾部添加一个元素person_dev_group.append("大森")第二种方式:insert()方法,指定下标说明:index值可以为正数、也可以为负数,超出list范围的index值,将在list的头部或者尾部插入元素per
- 自动化评估:利用机器学习算法评估
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1评估的意义评估在各个领域都扮演着至关重要的角色,例如教育、人力资源、医疗保健等。传统评估方式通常依赖人工,费时费力且容易受到主观因素的影响。随着机器学习技术的不断发展,自动化评估逐渐成为一种趋势,它能够提高评估效率、降低成本并减少人为偏差。1.2机器学习在评估中的优势机器学习算法能够从大量数据中学习规律,并根据这些规律对新的数据进行预测或分类。在评估领域,机器学习可以用于:自动评
- 2025年前端发展趋势
贵州数擎科技有限公司
前端javascript
开发领域:前端开发|AI应用|Web3D|元宇宙技术栈:JavaScript、React、ThreeJs、WebGL、Go经验经验:6年+前端开发经验,专注于图形渲染和AI技术开源项目:github晓智元宇宙、数字孪生引擎、前端面试题大家好!我是[晓智],一位热爱探索新技术的前端开发者,在这里分享前端和Web3D、AI技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- Kubernetes v1.17 版本解读 | 云原生生态周报 Vol. 31
编程微思
作者|徐迪、李传云、黄珂、汪萌海、张晓宇、何淋波、陈有坤、李鹏审核|陈俊上游重要进展1.Kubernetesv1.17版本发布功能稳定性是第一要务。v1.17包含22个增强功能:14个增强功能已逐渐稳定,4个增强功能已进入beta版,4个增强功能已进入alpha版本。MajorTheme云提供商标签达到GA这个自1.2版本就引入的label,在1.17版本终于GA。之前旧的label已经被废弃掉:
- 无线通信起源和发展现状
Zebros
信息与通信射频工程笔记
无线通信的起源和发展现状一、电磁波学说的提出目前我们生活中所用到的无线通信是基于“电磁波”进行传输,所以无线通信的起源就不得不提到“电磁波”,可以说“没有电磁波的发现就不会有现在的无线通信”。1、电磁感应提到“电”和“磁”,我们能轻易想到中学物理课上的“电生磁”、“磁生电”,我们脑海中一定会出现一个人名“法拉第”。在19世纪前,电学和磁学是两个不同的学科,虽然有学者在电或磁的实验中察觉到二者微妙的
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- Python基于OpenCV和PyQt5的人脸识别上课签到系统【附源码】
Java老徐
Python毕业设计pythonopencv人脸识别上课签到系统人脸识别上课签到上课签到系统PyQt5
博主介绍:✌Java老徐、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2024-2025年Java毕业设计选题推荐Python基于Django的微博热搜、微博舆论可视化系统,附源码基于PythonDjango的北极星招聘数据可视化系统感兴趣的可以先收藏起
- 做python少儿编程教程-超好玩的Python少儿编程
weixin_37988176
1.作者有14年的计算机培训经验,能抓住青少年的学习心理。2.超过180分钟的视频讲解,可下载也可扫码直接观看。《超好玩的Python少儿编程》是写给青少年读者的编程学习用书,主要通过游戏及作品的实例来讲解Python的编程方法,引导青少年在快乐中学习编程。通过游戏编程实例及有趣的作品,让青少年参与其中,培养他们独立分析问题和解决问题的能力,提高他们的探索精神,为今后进一步深入学习编程打好基础。《
- 天童教育:课外阅读图书推荐
t05777
其他
新学期开始了,现在正是孩子培养良好的阅读习惯的关键时期。让孩子感受阅读,爱上阅读,无疑会丰富孩子的日常生活,开阔孩子的视野,帮助孩子更好地生活。今天西安天童教育就和大家推荐几本适合孩子看的课外阅读书目,让阅读常伴孩子!《一年级的小豌豆和小蜜瓜》这是著名儿童文学作家商晓娜专门为一年级的孩子们写的入学故事书,故事围绕一年级女孩和男孩的生活展开,一共有31个小故事,全彩注音,适合孩子和家长们共读,了解校
- 软件工程和项目管理领域 - CMMI 极简理解
我命由我12345
行业-简化概念软件工程cmmi职场和发展职场发展创业创新学习方法求职招聘
CMMI概述CMMI全称为CapabilityMaturityModelIntegration,即能力成熟度模型集成CMMI是由美国卡内基梅隆大学软件工程研究所(SEI)开发的一套综合性管理模型CMMI是一种用于评估和改进组织在软件开发和维护方面过程能力的国际标准CMMI能帮助建立一套规范的、可度量的、持续改进的开发过程体系,提升组织的开发效率和质量企业申请CMMI认证,可以提升自身的软件开发能力
- Python 毕业设计怎样选题?500 到 Python 毕业设计题目推荐
程序员徐师兄
Python毕业设计python课程设计开发语言Python毕业设计选题
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W+,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌前言文章首发地址地址选择一个合适的Python毕业设计题目,是一个重要的决策,它将影响你未来几个月的工作。以下是一些关于如何选择一个合适的Python毕业设计题目,以及如何避免踩坑的建议:1、自己选题的不要凭空进行想象,一定要做到不
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- 代码精进:工作中学到的12个代码风格
程序员
在工作中,我们编写代码时尽可能地使其易于阅读。这意味着以下几点:变量名有意义且更长(而不是a,b和c)函数名有意义且更长许多注释和文档解释代码到处都是类型提示字符串似乎更长、更啰嗦等等以下是我在过去几年的工作中学到的一些生产级别的Python代码风格。1)使用括号的元组解包这是一些正常的元组解包:a,b=(1,2)在生产级别的代码中,我们通常不使用像a或b这样的变量名——相反,我们的变量名会变得更
- c语言实验使用什么作用,c语言实验总结与反思
努力的大头兵
c语言实验使用什么作用
c语言实验总结与反思怎么写?以下是小编整理的相关范文,欢迎阅读。c语言实验总结与反思一这个星期,我们迎来了C语言实训——一次至为重要的实训。在这个星期里,同学们都很认真的做着那20多道实训题目,遇到不懂的互相请教,或请问老师。非常感谢老师对我们的帮助,这次实训使我受益匪浅,收获了很多。通过C语言实训,让我加深了对C语言的了解,而不只是单单的在课本中学到的那些理论,平时乏味的课程,通过自己动手亲自编
- 10 个免费的 AI 图片生成工具分享
程序员
原文:https://openaigptguide.com/ai-picture-generator/在人工智能(AI)图像生成技术的推动下,各类AI图片生成网站如雨后春笋般涌现,为我们的日常生活提供了丰富多彩的视觉体验。AI图片生成技术原理人工智能(AI)图片生成技术原理是通过计算机程序使用深度学习算法从大量的数据中学习特征,并根据特征创建新的图片。该技术可以模拟人类的绘画过程,学习输入图像的潜
- 【机器学习实战入门项目】基于机器学习的鸢尾花分类项目
精通代码大仙
数据挖掘python深度学习机器学习分类人工智能大数据数据挖掘算法python
基于机器学习的鸢尾花分类项目介绍:本项目利用机器学习模型对鸢尾花进行分类。鸢尾花数据集是一个著名的机器学习数据集,包含三种类别的花朵:Setosa、Versicolor和Virginica,每种类别由四个特征描述:萼片长度、萼片宽度、花瓣长度和花瓣宽度。什么是机器学习?机器学习是关于从数据中学习预测或提取知识的过程。它是人工智能的一个子领域。机器学习算法基于样本数据(即训练数据)构建模型,并根据训
- Three.js实现动态水泡效果逐步解析GLSL着色器
贵州数擎科技有限公司
javascript着色器开发语言
大家好!我是[数擎AI],一位热爱探索新技术的前端开发者,在这里分享前端和Web3D、AI技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!开发领域:前端开发|AI应用|Web3D|元宇宙技术栈:JavaScript、React、ThreeJs、WebGL、Go经验经验:6年+前端开发经验,专注于图形渲染和AI技术经验经验:演示地址开源项目:智简未来、晓智元宇宙、数字
- 开源 多模态 大模型架构深度分析 2024
AI大模型 lose and dream
开源架构学习langchainprompt人工智能开发语言
1.典型开源多模态大模型(1)KOSMOS-2KOSMOS-2是微软亚洲研究院在KOSMOS-1模型的基础上开发的多模态大模型。其中,KOSMOS-1是在大规模多模态数据集上重头训练的,该模型具有类似GPT-4的多模态能力,可以感知一般的感官模态,在上下文中学习(即少样本学习)并能够遵循语音指示(即零样本学习)。KOSMOS-2采用与KOSMOS-1相同的模型架构和训练目标对模型进行训练,并在此基
- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 2021年12月19日,春蕾教育集团团建活动感受——黄晓丹
黄错错加油
感受:1.从陌生到熟悉的过程。游戏环节让我们在轻松的氛围中得到了锻炼,也增长了不少知识。2.游戏过程中,我们贡献的是个人力量,展现的是团队的力量。它磨合的往往不止是工作的熟悉,更是观念上契合度的贴近。3.这和工作是一样的道理。在各自的岗位上,每个人摆正自己的位置、各司其职充分发挥才能,并团结一致劲往一处使,才能实现最大的成功。新知:1.团队精神需要不断地创新。过去,人们把创新看作是冒风险,现在人们
- 山东大学小树林支教调研团青青仓木队——翟晓楠
山东大学青青仓木队
过了半年,又一次启程,又一次回到支教的初心之地。比起上一次的试探与不安,我更多了一丝稳重与熟练。心境、处境也都随着半个学期的过去而变得不同,半个学期中,身体上的,心理上的,太多的逆境让我变得步履维艰,曲曲折折,弯弯绕绕,我仿佛打不起精神,没有胃口,没有动力。感觉走的不顺畅的时候,支教这个旅程,给了我力量。自告奋勇承担起队长这一职务的我,从组织时的复杂和困难的经历,协调各种问题,从无到有,和校长和队
- 178 坚守自律
花儿迎风飞扬
如果错过了太阳时你流了泪,那么你也要错过群星了。如果你错过了早上而懊悔,那么你也要错过一整天了。白俊庭老师说,如果没有外部环境的咄咄逼人和自己逼自己,我们一般都不会自己走出舒适区,就像那只温水里的青蛙。百炼成钢,就是要锻造,就是锤打,给自己压力才有动力。咄咄逼人的外部环境是他律,是外力,走出舒适区是觉醒,是顿悟;而自己逼自己,是自律,是意志,是恒心,是内驱力。女儿的中学生活开始,开学整整一个月,也
- 晓盈的感恩日记第5天
fanny晓
2021年2月5日周五晴天今天是特别的一天,在家里参加完公司线上的职工大会,下午跑到妈妈家去户外劳作了。我感恩家公早上为我准备早餐,今天早读后回笼觉起晚了,又赶上开线上会议,爷爷帮我准备了早餐。我感恩儿子,早晨醒来发现我在早读,还愿意陪伴我早读,一直陪伴我半个小时。我感恩儿子和侄子,下午去户外劳作时来帮助我,一个帮我捡土豆,一个帮忙浇水,很难得的田园生活让孩子们体验到了,一直以来都想让孩子来体验,
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin