打算先看一下生产者消费者模型,在进行从头到尾系统的学习。
参考文章:C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)
1 单生产者-单消费者模型
源码及解析如下:
#include
#include
#include
#include
#include
#include
static const int kItemRepositorySize = 10; // Item buffer size.
static const int kItemsToProduce = 1000; // How many items we plan to produce.
struct ItemRepository {
int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
size_t read_position; // 消费者读取产品位置.
size_t write_position; // 生产者写入产品位置.
std::mutex mtx; // 互斥量,保护产品缓冲区
std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.
typedef struct ItemRepository ItemRepository;
void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock lock(ir->mtx);//可以简单的理解为开启线程锁
while(((ir->write_position + 1) % kItemRepositorySize)== ir->read_position)
{ // item buffer is full, just wait here.这时说明仓库满了,也就是写入的指针已经追着读取的指针追到一圈了
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
}
(ir->item_buffer)[ir->write_position] = item; // 在生产者指针位置写入产品.
(ir->write_position)++; // 写入位置后移.
if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
ir->write_position = 0;
(ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
lock.unlock(); // 解锁.
}
int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
}
data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
(ir->read_position)++; // 读取位置后移
if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
ir->read_position = 0;
(ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
lock.unlock(); // 解锁.
return data; // 返回产品.
}
void ProducerTask() // 生产者任务
{
for (int i = 1; i <= kItemsToProduce; ++i) {
// sleep(1);
std::cout << "Produce the " << i << "^th item..." << std::endl;
ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
}
}
void ConsumerTask() // 消费者任务
{
static int cnt = 0;
while(1) {
sleep(1);
int item = ConsumeItem(&gItemRepository); // 消费一个产品.
std::cout << "Consume the " << item << "^th item" << std::endl;
if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
}
}
void InitItemRepository(ItemRepository *ir)
{
ir->write_position = 0; // 初始化产品写入位置.
ir->read_position = 0; // 初始化产品读取位置.
}
int main()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask); // 创建生产者线程.
std::thread consumer(ConsumerTask); // 创建消费之线程.
producer.join();
consumer.join();
}
2 多生产者-单消费者模型
这个可能近期会用到,所以记录一下。例如数据库操作,可以把要存储的数据缓存下来,这样可以提高数据采集速度,缓存下来的数据可以采用事务处理批量操作,又提高了数据库存储的速度。多个线程采集数据,单个线程进行数据库存储。
#include
#include
#include
#include
#include
#include
static const int kItemRepositorySize = 4; // Item buffer size.
static const int kItemsToProduce = 10; // How many items we plan to produce.
struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository;
typedef struct ItemRepository ItemRepository;
void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock lock(ir->mtx);
while(((ir->write_position + 1) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
}
(ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++;
if (ir->write_position == kItemRepositorySize)
ir->write_position = 0;
(ir->repo_not_empty).notify_all();
lock.unlock();
}
int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
}
data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++;
if (ir->read_position >= kItemRepositorySize)
ir->read_position = 0;
(ir->repo_not_full).notify_all();
lock.unlock();
return data;
}
void ProducerTask()
{
bool ready_to_exit = false;
while(1) {
sleep(1);
std::unique_lock lock(gItemRepository.item_counter_mtx);//区别是这里加了个锁
if (gItemRepository.item_counter < kItemsToProduce) {
++(gItemRepository.item_counter);
ProduceItem(&gItemRepository, gItemRepository.item_counter);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is producing the " << gItemRepository.item_counter
<< "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
}
void ConsumerTask()
{
static int item_consumed = 0;
while(1) {
sleep(1);
++item_consumed;
if (item_consumed <= kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
}
void InitItemRepository(ItemRepository *ir)
{
ir->write_position = 0;
ir->read_position = 0;
ir->item_counter = 0;
}
int main()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask);
std::thread consumer(ConsumerTask);
producer1.join();
producer2.join();
producer3.join();
producer4.join();
consumer.join();