- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 马尔可夫决策过程(Markov decision process,MDP)
太阳城S
学习笔记马尔可夫决策过程MDP机器学习深度学习
文章目录马尔可夫决策过程(MDP)在机器学习中应用在机器学习中的引用示例引用:实例场景:机器人导航MDP的定义:引用示例:在此基础上更具体的描述,并给出每一步的推断计算过程场景描述:3x3网格中的机器人导航MDP的定义强化学习算法:Q-Learning具体实例与推断计算过程回合1(Episode1Episode1Episode1)回合2(Episode2Episode2Episode2)回合3(E
- Streamline Complex Decision Making with AI
SEO-狼术
DelphinetCrack开发语言
StreamlineComplexDecisionMakingwithAILogicGemhelpsdevelopersandanalyststocollaborateoncraftingclear,consistentbusinessrulesusingdecisiontablemethodology.LogicGemisaWindowsapplicationdesignedtoempowerb
- Business Decision Analytics under Uncertainty
areyousure7
数据库前端
BusinessDecisionAnalyticsunderUncertaintyAssignment1Pleaseshowyourentireworkwithbrief,butsufficientlydetailedexplanationinaWorddocument.Startyouranswerbytypingyourname,RUIDandemailaddress.Youcanrefert
- 机器学习的几种基本算法
陌上尘飞123
决策树:曾经最流行的分类算法在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一中映射关系。http://thegrimmscientist.com/tutorial-decision-trees/K-均值聚类:一中非常简单
- 论文阅读:Brain–Computer EMO: A Genetic Algorithm Adapting to the Decision Maker
还是要努力呀!
论文阅读论文阅读多目标优化
Brain–ComputerEvolutionaryMultiobjectiveOptimization:AGeneticAlgorithmAdaptingtotheDecisionMaker作者:RobertoBattiti、AndreaPasserini期刊:IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION、OCTOBER2010DOI:10.1109/TEV
- a decision
爱生活的小雨
Today,Ireceivedacallfromtheapreson!Yes,Ipassedtheexam.ThatmeansIcanhaveajobwithmyboyfriendtogether.But,Ithinkthepayisalittlelower.ThisopportunityprovesIhavemadeprogressinteachingEnglish.Anyway,themost
- Decision
嬉节
AlthoughIhavepassedtheexam,effortsstillneedtobecreated.Yesterdayfinishedthesitcom‘GoodLuckCharlie’,itwassointerestingthatIhavedecidedtowatchitagain.Simultaneously,onethoughtcameoutofmybrain,whynottoac
- 如何利用机器学习甄别淘宝优质店铺
数智物语
文章发布于公号【数智物语】(ID:decision_engine),关注公号不错过每一篇干货。转自|数据团学社,微信搜索metrodata_xuexi即可关注本文约2400字,阅读需要7分钟关键词:Pythonsklearn决策树KNN逻辑回归SVM本文讲述了使用python分别构建决策树、KNN、逻辑回归、SVM、神经网络共五种不同的模型甄别淘宝优质店铺的过程。目录1.背景知识介绍2.数据和工具
- 【LUBS5308M】Business Analytics and Decision Science
iuww1314
学习
BackgroundinformationInthispartoftheassignment,youaretheanalyticmanagerof“AutonomousShipment”,anewstart-upventureoperatingoutofLeedsthatislookingtouseautonomousrobotdronestoconductlastleglogisticstode
- 【Python机器学习】多分类问题的不确定度
zhangbin_237
Python机器学习机器学习python分类分类算法
decision_function和predict_proba也适用于多分类问题。还是以鸢尾花数据集为例:fromsklearn.ensembleimportGradientBoostingClassifierfromsklearn.datasetsimportmake_circles,load_irisimportnumpyasnpfromsklearn.model_selectionimpor
- 【时事英语学习笔记】Europe's historic responsibility and moment of decision
高山枕寒流
有的时候,为什么我们写的英语很生硬,但是人家的表达却很生动,我觉得一方面是我们掌握的高级的动词比较少,另一方面是一些修饰动词的副词我们掌握的也很少,一些副词的添加就可以让整个话语生动起来了。今天我又学习了一篇评论。Russia's"specialmilitaryoperation"inUkraineisundoubtedlyoneofthemostseriousgeopoliticalconfli
- R语言构建决策树模型(decision tree)并可视化决策树:自定义函数计算对数似然、自定义函数计算模型的分类效能(accuray、F1、偏差Deviance)、使用pander包美化界面输出内容
statistics.insight
pythonr语言开发语言机器学习
R语言构建决策树模型(decisiontree)并可视化决策树:自定义函数计算对数似然、自定义函数计算模型的分类效能(accuray、F1、偏差Deviance)、使用pander包美化界面输出内容目录
- 马尔科夫决策过程(Markov Decision Process)揭秘
アナリスト
机器学习人工智能深度学习动态规划
RL基本框架、MDP概念MDP是强化学习的基础。MDP能建模一系列真实世界的问题,它在形式上描述了强化学习的框架。RL的交互过程就是通过MDP表示的。RL中Agent对Environment做出一个动作(Action),Environment给Agent一个反馈(Reward),同时Agent从原状态()变为新状态()。这里的反馈可以是正、负反馈;Agent执行动作是根据某个策略(Policy)进
- 构建优质的推荐系统服务
数智物语
文章发布于公号【数智物语】(ID:decision_engine),关注公号不错过每一篇干货。来源|大数据与人工智能(ID:ai-big-data)作者|gongyouliu前言:文章中简单提到了推荐Web服务模块,这一模块也是直接与用户交互的部分,在整个推荐系统业务流中具有举足轻重的地位,因为Web服务模块的好坏直接影响用户体验。本篇文章,作者会详细介绍怎么构建优质的推荐交互模块,如何打造优质的
- 2022-04-06
惠惠_f7a0
#重新学习人类图#第94天(4月6日)人类图人的一生都在不停地做选择和做决策(Decision-Making)。据科学研究显示,平均每个人每天要做出35,000个选择。对于人生重大决策,我们有内在权威和外在权威两种决策依据。外在权威就是我们的大脑(Mind)。内在权威则是依赖我们的内在感觉帮我们做出人生的重大决策。人类图说生命只发生在喉咙以下。使用内在权威是我们拿回生命自主权的转化,这是基于我们相
- 决策树回归(Decision Tree Regression)
草明
数据结构与算法决策树回归算法人工智能机器学习
什么是机器学习**决策树回归(DecisionTreeRegression)**是一种机器学习算法,用于解决回归问题。与分类问题不同,回归问题的目标是预测连续型变量的值,而不是离散的类别。决策树回归通过构建一棵决策树来进行预测。以下是决策树回归的基本步骤:数据准备:收集并准备回归问题的数据集。数据集应包含特征(自变量)和目标变量(因变量),其中目标变量是连续型的。特征选择:选择用于构建决策树的特征
- 吃掉那只青蛙
过往_503a
列好计划,排好事情的优先级,闭嘴去做,不要让高科技侵占我们的时间。养成良好习惯的三个D:decision(决心),discipline(自律),determination(坚定不移)约束自己反复练习那些想要学习的原则,直至完全掌握为止。七个步骤:1、确定究竟想要什么2、把目标写下来3、为目标设定一个完成的最后期限4、把能想到的,实现目标所需要做的所有事情都列出来,每当想到新的内容,就立即把他们添加
- 梯度提升决策树(Gradient Boosting Decision Trees,GBDT)
孤嶋
决策树boosting算法梯度提升机器学习
梯度提升决策树(GradientBoostingDecisionTrees,GBDT)提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。-----------------
- 敏捷漫画#24-决策者
小船哥说敏捷
#24-决策者(Decision-Maker)图1图2图3图4作者评论:产品负责人需要与他人澄清或保持一致,才能回答关于优先级的问题,这本身不一定是一种反模式。但是,如果他/她在没有咨询更高层人员之前,永远无法做出任何决定,那么PO很可能没有得到足够的授权来正确履行这个角色。授权对于PO来说很重要,因为如果他/她有权对利益相关者说“不”,有权推迟管理层或客户的需求,并有权对需求进行优先级排序和过滤
- 2019-03-08 I have a decision
Diana_wy
今天早上觉得很困很困,起不来,闹钟响了一遍又一遍,直到7:10,才不得不起床,吃完饭奔着前往图书馆,竟然我喜欢的座位还是空的,甚是开心。早上的天气真的很好很好,以至于我很想在外面多转悠几圈,于是放下书本便去去教室,放下书包便来到教学楼的门口,一边晒太阳一边背着单词。早上的课程《财务报表分析》,今天这节课可能是我上了这么多会计,上了这么多财务报表分析课程以来,觉得最受用的一节课。这节课通过不停的去看
- 决策树(Decision Trees)
草明
数据结构与算法决策树算法机器学习
决策树(DecisionTrees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个输出值。以下是决策树的基本原理和特点:基本原理树结构:决策树由树结构组成,包含根节点、内部节点和叶节点。每个内部节点表示一个特征,每个叶节点表示一个输出值。划分规则:决策树的构建过程涉及选择最佳的特征进
- 【MGRC30003】Decision Analysis Simulation
iuww1314
学习
1stCase:AquaLuxBathSoapsTheleadershipteamatAquaLux,aprominentbathsoapmanufacturer,isaimingtooptimizetheirinventoryexpenses.Thecostincurredweeklyforholdingasingleunitofsoapinstockamountsto£30(whereoneu
- 第七课:收集—察觉与释放压力的笔记术
静享成长
写在作业前:阅读中存在的问题:1、读完熊谷正寿的《记事本圆梦笔记》自己提出的问题明显有读完之后只是做了阅读笔记的感觉。听李翔老师的课原因出在以下几个方面:没有和自己的实际问题结合起来。其次,没有抓住提问的逻辑。那么,如何将自己的所学所读和自己的实际问题结合起来呢?抓住提问的逻辑顺序一步一步问。(what—why—how—howmuch—decision)回过头来复盘,看看老师每次都是怎样提问的,提
- 03 decision tree(决策树)
叮咚Zz
深度学习决策树算法机器学习
一、decisiontree(决策树)1.classificationproblems(纯度)i.entropy(熵)作用:衡量一组数据的纯度是否很纯,当五五开时他的熵都是最高的,当全是或者都不是时熵为0ii.informationgain(信息增益)父节点到子节点的熵的减少称为信息增益,处理分支熵的时候,选择使用熵的加权平均值来衡量熵值的高低,计算信息增益是为了看两阶之间如果增益太小的话则不需要
- 【机器学习基础】决策树(Decision Tree)
为梦而生~
机器学习机器学习决策树人工智能分类分类算法
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!后面的内容会越来越有意思~⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
- Deep Q-Network (DQN)理解
兔兔爱学习兔兔爱学习
python机器学习深度学习学习
DQN(DeepQ-Network)是深度强化学习(DeepReinforcementLearning)的开山之作,将深度学习引入强化学习中,构建了Perception到Decision的End-to-end架构。DQN最开始由DeepMind发表在NIPS2013,后来将改进的版本发表在Nature2015。NIPS2013:PlayingAtariwithDeepReinforcementLe
- My SQL 单词
何鹏辉
Multifunctional多功能的Transactional事务的approximate大约的decision决定manual手册手动connection连接enable允许firewall防火墙exception异常意外port端口strict严格的mode模式recommend推荐的character字符default默认的language语言modify修改security安全root根
- 工具系列:TensorFlow Decision Forests_(1)构建、训练和评估模型
愤斗的橘子
数据挖掘tensorflow机器学习
文章目录1.介绍2.安装TensorFlowDecisionForests3.导入库4.训练一个随机森林模型4.1加载数据集并将其转换为tf.Dataset4.2训练模型4.3备注5.评估模型6.为TensorFlowServing准备这个模型。7.绘制模型8.模型结构和特征重要性9.模型自我评估10.绘制训练日志11.使用不同的学习算法重新训练模型12.使用特征子集13.超参数14.特征预处理1
- finereport 超链接地址如何写为相对地址
qq_36120059
finereportfinereport
encodeURI("${servletURL}?viewlet=填报.cpt&op=write");假如访问的是http://localhost:8075/webroot/decision/view/report?viewlet=workbook1.cpt,servletURL指的是:/webroot/decision/view/report如果超链接到填报,要在超链接地址后面加上&op=wri
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><