《算法》编程作业1-Percolation渗透模型

https://github.com/hym105289/Percolation

1. 基本介绍

1.作业地址:http://coursera.cs.princeton.edu/algs4/assignments/percolation.html
2.模型介绍

《算法》编程作业1-Percolation渗透模型_第1张图片
渗透模型

①有一个N-by-N矩阵,如上图,每个小格子代表一个site
②当site为black时说明当前site为blocked(关闭的)
③非黑色为open
④当一个site为open且他和其他相邻的site连接并且可以连接到矩阵顶部我们称这个site为full
⑤如果矩阵最底部有site可以连接到矩阵顶部,我们称这个矩阵为渗透的
3. 作业要求
每个site以概率p为open,1-p的概率阻塞,计算当概率多少时系统是渗透的?
《算法》编程作业1-Percolation渗透模型_第2张图片
左n=20,右n=100

4. 基本思路
假设要测试20*20的系统以概率多少能渗透,比如每次随机地选择一个site设置成open,当系统渗透时有204个site是open的,那么p=204/400=0.51.我们需要做的就是反复试验计算p的值。

2. 判断系统是否是渗透?

1.数据结构

public class Percolation {
   private WeightedQuickUnionUF grid;//保存连通的信息
   private boolean[] state;//保存每个site是否open
   private final int n; 
   public Percolation(int n)                // create n-by-n grid, with all sites blocked
   public void open(int row, int col)    // open site (row, col) if it is not open already
   public boolean isOpen(int row, int col)  // is site (row, col) open?
   public boolean isFull(int row, int col)  // is site (row, col) full?
   public  int numberOfOpenSites()       // number of open sites
   public boolean percolates()              // does the system percolate?
   public static void main(String[] args)   // test client (optional)
}

2.如何进行Open操作
①[row,col]当前的state为true,则已经open了则直接返回
②[row,col]当前的state为false,先将state设置为true,然后判断相邻的上下左右四个点是否是open的,如果是open的就将其进行连接。注意:每次都要检测row和col的合法性质,下标从1开始。
2.如何进行isFull操作
①首先判断[row,col]isOpen,如果false直接返回false;
②for 第一行的第一列 to 第一行的最后一列:先判断是否isOpen,如果false,直接返回false;如果是open的那么就继续判断[row,col]和该点是不是connected,如果是则返回true,否则返回false;

3.反复进行实验,计算概率p

①首先初始化一个N-by-N矩阵,全部为blocked。
②重复以下动作直到这个矩阵渗透为止:从blocked状态的sites中随机选择一个site将其open,直到当前模型渗透为止。
③然后计算open状态的sites的个数设为number,利用number/(N*N)计算出渗透率。
假设进行T次实验,每次求得阈值为x,则有:


利用标准差和平均值思想找出置信率为95%的阀值:

public class PercolationStats {
   private final double[] threshold;
   private double x;
   private double s;
   public PercolationStats(int n, int trials)    // perform trials independent experiments on an n-by-n grid
   public double mean()                          // sample mean of percolation threshold
   public double stddev()                        // sample standard deviation of percolation threshold
   public double confidenceLo()                  // low  endpoint of 95% confidence interval
   public double confidenceHi()                  // high endpoint of 95% confidence interval
   public static void main(String[] args)        // test client (described below)
}

总结

1.要注意row和col的取值范围都是1-n,并不是我们通常的从0开始索引。
2.一定要记得判断row和col的合法性质
3.StdRandom.uniform(lo,hi)产生的是从lo到hi-1的随机数
4.代码:

import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.WeightedQuickUnionUF;

public class Percolation {
    private WeightedQuickUnionUF grid;
    private boolean[] state;
    private final int n;

    public Percolation(int n) {
        if (n <= 0) {
            throw new IllegalArgumentException();
        } else {
            this.n = n;
            int size = this.n * this.n + 1;
            grid = new WeightedQuickUnionUF(size);
            state = new boolean[size];
            for (int i = 1; i < size; i++) {
                state[i] = false;
            }
        }
    }

    private boolean isInGrid(int i, int j) {
        if ((i < 1 || i > n) || (j < 1 || j > n))
            return false;
        else
            return true;
    }

    public void open(int row, int col) {
        if (!isInGrid(row, col)) {
            throw new IllegalArgumentException();
        }
        if (isOpen(row, col))
            return;
        int p = (row - 1) * this.n + col;
        state[p] = true;
        int up = p - this.n;
        if (isInGrid(row - 1, col) && state[up]) {
            grid.union(p, up);
        }
        int left = p - 1;
        if (isInGrid(row, col - 1) && state[left]) {
            grid.union(p, left);
        }
        int right = p + 1;
        if (isInGrid(row, col + 1) && state[right]) {
            grid.union(p, right);
        }
        int bottom = p + this.n;
        if (isInGrid(row + 1, col) && state[bottom]) {
            grid.union(p, bottom);
        }
    }

    public boolean isOpen(int row, int col) {
        if (row < 1 || row > this.n || col < 1 || col > this.n) {
            throw new IllegalArgumentException();
        }
        int index = (row - 1) * this.n + col;
        return state[index];
    }

    public boolean isFull(int row, int col) {
        if (row < 1 || row > this.n || col < 1 || col > this.n) {
            throw new IllegalArgumentException();
        }
        int p = (row - 1) * this.n + col;
        for (int i = 1; i < this.n + 1; i++) {
            // first must consider the row,col is open
            if (isOpen(1, i) && isOpen(row, col) && grid.connected(p, i))
                return true;
        }
        return false;
    }

    public int numberOfOpenSites() {
        int num = 0;
        int size = this.n * this.n + 1;
        for (int i = 0; i < size; i++) {
            if (state[i])
                num++;
        }
        return num;
    }

    public boolean percolates() {
        int row = this.n;
        for (int col = 1; col < this.n + 1; col++) {
            if (isFull(row, col))
                return true;
        }
        return false;
    }

    public static void main(String[] args) {
        int[] test = new In(args[0]).readAllInts();
        Percolation percolation = new Percolation(test[0]);
        for (int i = 1; i < test.length - 2; i += 2) {
            percolation.open(test[i], test[i + 1]);
            System.out.println(
                    test[i] + "," + test[i + 1] + "     isopen:" + percolation.isOpen(test[i], test[i + 1]));
            System.out.println(
                    test[i] + "," + test[i + 1] + "     isfull:" + percolation.isFull(test[i], test[i + 1]));
            System.out.println(test[i] + "," + test[i + 1] + "      percolation:" + percolation.percolates());
        }
    }
}

import edu.princeton.cs.algs4.StdRandom;
import edu.princeton.cs.algs4.StdStats;

public class PercolationStats {
    private final double[] threshold;
    private double x;
    private double s;
    public PercolationStats(int n, int trials) {
        if (n <= 0 || trials <= 0) {
            throw new IllegalArgumentException();
        }
        threshold = new double[trials];
        for (int i = 0; i < trials; i++) {
            Percolation p = new Percolation(n);
            while (!p.percolates()) {
                int row = StdRandom.uniform(1, n + 1);
                int col = StdRandom.uniform(1, n + 1);
                if (!p.isOpen(row, col)) {
                    p.open(row, col);
                }
            }
            threshold[i] = (double) p.numberOfOpenSites() / n / n;
        }
    }

    public double mean() {
        x=StdStats.mean(threshold);
        return x;
    }

    public double stddev() {
        s=StdStats.stddev(threshold);
        return s;
    }

    public double confidenceLo() {
        double low = x - 1.96 * s / (Math.sqrt((double) threshold.length));
        return low;
    }

    public double confidenceHi() {
        double hi = x + 1.96 * s / (Math.sqrt((double) threshold.length));
        return hi;
    }

    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        int trials = Integer.parseInt(args[1]);
        PercolationStats stats = new PercolationStats(n, trials);
        double x = stats.mean();
        double s = stats.stddev();
        double low = stats.confidenceLo();
        double hi = stats.confidenceHi();
        System.out.printf("mean=%f\n", x);
        System.out.printf("stddev=%f\n", s);
        System.out.printf("%f %f\n", low, hi);
    }
}

http://blog.csdn.net/zerodshei/article/details/53504171

你可能感兴趣的:(《算法》编程作业1-Percolation渗透模型)