- 人工智能在新能源电网运行中的垂直应用与解决方案
人工智能
随着全球采用可再生能源的力度不断加大,可再生能源电力系统运营日趋复杂。传统的数值计算方法难以适应电力系统运营中的不确定性和复杂性。这篇论文全面研究了人工智能技术在可再生能源电力系统预测、调度、控制和电力市场中的应用前景以及对应的解决方案文章地址:NatureReviewElectricalEngineering来源公众号:新能源电网与AIGC洞察主要观点基于人工智能的方法可以帮助克服可再生能源发电
- 数值计算方法实验
小wal
数值计算方法数值计算方法实验报告
1.给定下述算法框图,用逐步扫描法和二分法求方程x5+3x-1=0的最小正根,要求准确到1/2×10-2。要求:(1)取步长h=1,先用逐步扫描法编程搜索一个隔根区间,将搜索到的隔根区间打印输出;(2)然后对该区间使用二分法求方程的满足精度要求的根,每二分一次,用新生成区间长度的一半作为是否二分结束的判断条件;(3)要求步长h和精度ε从键盘输入;(4)输出每一次二分过程所得到的区间端点ak、bk以
- 数值计算方法
POP-2000
第一章绪论1.1数值计算方法的研究对象和特点1.计算机解决科学计算问题的一般过程可概括为:实际问题->数学模型->计算方法->程序设计->上机计算。2.对算法所要考虑的问题:a.计算速度:eg:求解一个20阶线性方程组,用克莱姆法则要进行9.71020次运算,如用每秒1亿次乘法运算的计算机要30万年;而用加减消元法需3000次乘法运算.b.存储量c.数值稳定性3.数值计算方法的特点面向计算机,算
- 强化学习原理python篇05——蒙特卡罗方法
WuRobb
强化学习python开发语言
强化学习原理python篇05——MonteCarloMethods蒙特卡罗方法Ref本章全篇参考赵世钰老师的教材Mathmatical-Foundation-of-Reinforcement-LearningMonteCarloMethods章节,请各位结合阅读,本合集只专注于数学概念的代码实现。蒙特卡罗方法蒙特卡罗方法是一种基于随机模拟的数值计算方法,它的名字来源于摩纳哥的蒙特卡罗赌场。蒙特卡
- MCM备赛笔记——蒙特卡罗方法
我我我想出去玩
数学建模笔记数学建模
KeyConcept蒙特卡罗方法(MonteCarloMethod),也称为统计模拟方法,是一种基于概率和统计的数值计算方法。该方法使用随机数(或更常见的伪随机数)来解决可能非常复杂的数学或物理问题。蒙特卡罗方法广泛应用于金融、物理、工程、运筹学等领域。建模思路定义问题的概率模型:确定问题的数学或物理模型,并将其转化为可以通过概率方法解决的形式。生成随机数:根据问题的概率分布生成随机数或伪随机数序
- 【信号与系统】【北京航空航天大学】实验三、连续时间信号的频域分析 【MATLAB】
不是AI
信号与系统MATLABmatlab开发语言
一、实验目的1、掌握傅立叶变换(TheFourierTransform)及其性质;2、掌握连续时间信号傅立叶变换的数值计算方法;3、掌握利用MATLAB实现信号的幅度调制(AmplitudeModulation,AM)的方法;4、掌握利用MATLAB实现对周期信号的频谱分析。二、实验内容1、MATLAB代码:>>clearall;>>t=-4:0.001:4;>>N=input('N=');N=3
- 插值算法——数学建模清风笔记
沐尘.affluent
数学建模笔记
数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。建模实例:MathorCup第六届A题淡水养殖池塘水华发生及池水净化处理参考资料:刘春凤:中国大学MOOC数值计算方法插值法的定义插值法的概念:设函数y=f(x)在区间[a,b]上有定义,且
- 大飞机与计算机CFD模拟仿真:推动航空工业的技术革命
a谷雨c
CFD模拟仿真AirpakFluentTecplot人工智能算法
大飞机与计算机CFD模拟仿真:推动航空工业的技术革命随着科技的飞速发展,计算机技术已经成为现代工业制造的核心驱动力。在航空工业中,计算流体动力学(CFD)模拟仿真技术发挥着越来越重要的作用。大飞机设计制造是一个高度复杂且精密的过程,涉及空气动力学、结构力学、热力学等多个学科。CFD模拟仿真技术通过数值计算方法模拟飞行器的流体动力学行为,为设计人员提供真实、准确的飞行器性能数据,从而优化设计方案、降
- 数值分析-牛顿插值公式
轩Scott
机器学习算法概率论
目录一、引言二、牛顿插值公式的基本概念1.插值问题2.插值多项式3.牛顿插值公式三、牛顿插值公式的推导过程四、牛顿插值公式的应用1.图像处理2.信号处理五、牛顿插值公式的优缺点1.优点2.缺点六、总结一、引言在数值分析中,插值是一种重要的数值计算方法,它可以通过已知的一些数据点来推断出未知的数据点。插值方法在实际应用中有着广泛的应用,例如在图像处理、信号处理、地图绘制等领域都有着重要的作用。牛顿插
- 【python】用蒙塔卡罗方法的重要性采样估计定积分
Dongzizhu
数学代码python机器学习统计学数据挖掘
前几天在用蒙特卡洛方法估计定积分的时候,发现中文网站上这方面的资料很少,即使有也没有说的很详细,所以这里专门写一篇博文记录自己的学习,仅供大家参考。欢迎指点。蒙特卡洛方法蒙特卡罗方法(MonteCarlomethod),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。简单来说,MCM就是一种使用随机数(或
- 数值分析-欧拉方法的概念、原理与应用
轩Scott
算法机器学习线性代数
目录一、前言二、欧拉方法的概念三、欧拉方法的原理四、欧拉方法的优缺点五、欧拉方法的应用六、欧拉方法的改进七、欧拉方法的实现八、总结一、前言数值分析是一门研究数值计算方法的学科,它主要研究如何利用计算机对数学问题进行求解。欧拉方法是数值分析中的一种常见方法,它可以用来求解常微分方程的数值解。本文将介绍欧拉方法的概念、原理、优缺点、应用、改进以及实现方法。二、欧拉方法的概念欧拉方法是一种数值求解常微分
- 《工程数值计算Python教程》笔记
丷从心
数值计算方法数值计算方法Python
文章目录@[toc]第一章:绪论1.11.11.1|数值计算在工程科学中的重要性1.21.21.2|数值计算方法1.31.31.3|程序设计盒图计算方法的选取减少运算次数避免相近的数相减1.41.41.4|误差的来源、表示及传递误差的来源和分类模型误差观测误差截断误差舍入误差误差的表示绝对误差相对误差平均误差标准误差误差的传递误差在和、差计算中的传递绝对误差相对误差误差在积、商计算中的传递乘积的绝
- 使用Python实现蒙特卡罗算法
后端架构魔法构筑者
算法python机器学习Python
使用Python实现蒙特卡罗算法蒙特卡罗算法是一种基于随机抽样的数值计算方法,常用于解决复杂的数学问题和模拟实验。它通过生成大量的随机样本,并利用这些样本来估计问题的解或概率分布。在本文中,我们将使用Python编写代码来实现蒙特卡罗算法,并通过一个简单的例子来演示其应用。首先,让我们看一个简单的问题:估计圆周率π的值。蒙特卡罗算法可以通过在一个正方形内随机生成均匀分布的点,并统计落在一个单位圆内
- 机器人可操作度 matlab,并联机器人可操作度分析的蒙特卡罗方法
weixin_39957027
机器人可操作度matlab
引言蒙特卡罗法是以概率统计理论为指导的一类非常重要的数值计算方法,以其简单、实用、通用性强的特点而被广泛应用于机器人工作空间的研究中[16]。研究发现,蒙特卡罗法生成的工作空间的随机点分布是不均匀的[3],这种不均匀性中蕴含着与机器人运动特性有关的信息。文献[78]在D-H法求串联机器人位置正解的基础上,基于卷积理论推导出了蒙特卡罗法生成的串联机器人工作空间上点的分布不均匀程度与机器人可操作度的关
- 列主元消去法c语言实验报告,高斯列主元消去法实验报告
世界上最后一只猫
列主元消去法c语言实验报告
高斯列主元消去法实验报告《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2.:用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性
- matlab追赶法解三对角方程组_数值计算方法 第三章 线性代数方程组的直接解法(1)...
weixin_39827728
写在章前:求解线性方程组的数值方法大体上可分为直接法和迭代法两大类.。直接法是指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解法,又称为精确法;迭代法则是采取逐次逼近的方法,亦即从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是方程组的精确解,只经过有限次运算往往得不到精确解。在这一章,我们将主要介绍解线性方程组的一些基本的直接法。一、Gauss消去法1、三角形方
- MATLAB实现插值法绘制sin函数
CyberJolt
matlab算法开发语言Matlab
MATLAB实现插值法绘制sin函数插值法是一种常用的数值计算方法,它可以通过已知的离散数据点,推断出在这些点之间的函数值。在本文中,我们将使用MATLAB来实现插值法,并用插值法绘制sin函数曲线。首先,我们需要定义一组离散的数据点,以及要进行插值的区间。在这里,我们选择在区间[0,2π]上定义离散的数据点,并使用插值法在该区间内生成sin函数的曲线。下面是MATLAB的源代码实现:%定义离散数
- 【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】
QomolangmaH
#计算方法与科学建模插值Newton插值pythonc语言
文章目录一、近似表达方式1.插值(Interpolation)2.拟合(Fitting)3.投影(Projection)二、Lagrange插值1.拉格朗日插值方法2.Lagrange插值公式a.线性插值(n=1)b.抛物插值(n=2)三、Newton插值1.天书2.人话3.例题4.python实现5.C语言实现一、近似表达方式 插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、
- 深入理解强化学习——马尔可夫决策过程:蒙特卡洛方法-[基础知识]
von Neumann
深入理解强化学习人工智能强化学习深度强化学习马尔可夫决策过程蒙特卡洛方法马尔科夫决策过程马尔可夫过程
分类目录:《深入理解强化学习》总目录蒙特卡洛方法(Monte-CarloMethods)也被称为统计模拟方法,是一种基于概率统计的数值计算方法。运用蒙特卡洛方法时,我们通常使用重复随机抽样,然后运用概率统计方法来从抽样结果中归纳出我们想求的目标的数值估计。一个简单的例子是用蒙特卡洛方法来计算圆的面积。例如,在下图所示的正方形内部随机产生若干个点,细数落在圆中点的个数,圆的面积与正方形面积之比就等于
- 【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】
QomolangmaH
#计算方法与科学建模算法插值python
文章目录一、近似表达方式1.插值(Interpolation)2.拟合(Fitting)3.投影(Projection)二、Lagrange插值1.天书2.人话拉格朗日插值方法a.线性插值(n=1)基本思想线性插值与线性方程组b.抛物插值(n=2)基本思想优点和局限性应用场景c.n次插值基本思想插值基函数的选择优点和和局限性3.python实现4.C语言实现一、近似表达方式 插值、拟合和投影都是
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(五):Householder方法【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵python线性代数算法特征值特征向量人工智能
文章目录一、Jacobi旋转法二、Jacobi过关法三、Householder方法1.旋转变换a.旋转变换的选择b.旋转变换的顺序2.Householder矩阵(HouseholderMatrix)a.H矩阵的定义b.H变换的几何解释c.H变换的应用场景3.H变换过程详解a.过程介绍b.细节解析4.H变换例题解析四、Python实现调试过程 矩阵的特征值(eigenvalue)和特征向量(eig
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(二):Jacobi 过关法(Jacobi 旋转法的改进)【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵算法线性代数特征值特征向量数据结构
文章目录一、Jacobi旋转法1.基本思想2.注意事项二、Jacobi过关法1.基本思想2.注意事项三、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法,Jacobi过关法是Jacobi旋转法的一种改进版本,其主要目的是减少计算工作和
- 牛顿迭代法求解方程根——C语言
不懂c语言的小白
c语言算法线性代数
牛顿迭代法是一种求解非线性方程的数值计算方法,它的基本思路是通过不断迭代逼近方程的根。下面我们将介绍如何使用C语言编写牛顿迭代法求解方程根的代码,并利用博客对代码进行解释。一、牛顿迭代法原理牛顿迭代法的基本原理是利用函数f(x)在点x_0处的切线来逼近函数的零点,将切线与X轴交点作为下一个近似值x_1,如此往复迭代下去,直到收敛为止。假设f(x)在x_0处可导,则f(x)在x_0点的切线方程为:y
- 【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】
QomolangmaH
#计算方法与科学建模python开发语言算法欧拉方法向后Euler
文章目录一、数值积分法1.一般步骤2.数值方法二、欧拉方法(EulerMethod)1.向前欧拉法(前向欧拉法)2.向后欧拉法(后向欧拉法)a.基本理论b.算法实现 常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(OrdinaryDifferentialEquations,ODEs)的问题。一、数值积分法1.一般步骤确定微分方程:给定微分方程组y′(x)=f(x,
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(三):Jacobi 旋转法【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵python算法Jacobi旋转法特征值特征向量
文章目录一、Jacobi旋转法1.基本思想2.计算过程演示二、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。 本文将详细介绍Jacobi旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Python实现。一、
- 常微分方程(ODE)的数值计算方法
强劲九
数学算法数值计算ODE常微分方程runge-kuttamethods
目录1/欧拉法(EulerMethod)[^2]2/龙格-库塔法(Runge-KuttaMethod)2.1/四阶Runge-Kutta方法2.2/Runge-Kutta的一般形式参考常微分方程组的求解比较麻烦,通常在计算机上使用数值计算的方式去进行。假设一阶常微分方程组(ODEs)由下式给出dxdt=fi(x),i=1,2,…,n\frac{dx}{dt}=f_i(x),~i=1,2,\dots
- 【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】
QomolangmaH
#计算方法与科学建模python开发语言数值积分法算法欧拉方法向前欧拉
文章目录一、数值积分法1.一般步骤2.数值方法二、欧拉方法(EulerMethod)1.向前欧拉法(前向欧拉法)a.基本理论b.典例解析c.算法实现 常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(OrdinaryDifferentialEquations,ODEs)的问题。一、数值积分法1.一般步骤确定微分方程:给定微分方程组y′(x)=f(x,y(x))y'(
- 数值计算方法 Chapter7. 计算矩阵的特征值和特征向量
Espresso Macchiato
基础数学幂法反幂法计算方法特征值数值求解Jacobi方法
数值计算方法Chapter7.计算矩阵的特征值和特征向量0.问题描述1.幂法1.思路2.规范运算3.伪代码实现2.反幂法1.思路&方法2.伪代码实现3.实对称矩阵的Jacobi方法1.思路&方法2.伪代码实现0.问题描述这一章节面对的问题是说,给定一个nnn阶矩阵,如何数值求解其特征值,即:Ax=λxAx=\lambdaxAx=λx1.幂法1.思路幂法的主要思路其实依然还是来源于迭代思想。显然,对
- 【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现
QomolangmaH
#数值计算方法python矩阵Jacobi旋转法特征值特征向量人工智能算法
文章目录一、Jacobi旋转法1.基本思想2.计算过程演示3.注意事项二、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。 本文将详细介绍Jacobi旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Pytho
- 蒙特卡洛方法(Monte Carlo method,也有翻译成“蒙特卡罗方法”)
DL-ML
机器学习
蒙特卡洛方法(MonteCarlomethod,也有翻译成“蒙特卡罗方法”)是以概率和统计的理论、方法为基础的一种数值计算方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,故又称随机抽样法或统计试验法。上述就是蒙特卡洛方法的基本概念,比较抽象,下面结合实际工作中的理解,谈一谈对蒙特卡洛方法的一些认识。(1)首先,蒙特卡洛不是个人名,而是个地名,说明该方法与
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f