mysql和hbase关联查询统计及java8流处理实战

新项目重构,由于数据量太大,采用了mysql存主表和hbase存记录表的方式

(使用的phoenix操作hbase,通过mybatis多数据源连接mysql和phoenix,具体实现移步https://blog.csdn.net/qq_31349087/article/details/88535387)

现有一个需求,分别按老师,班级,校区的维度查询学员的实操合格率,作业达标率,目前老师,班级,校区信息都在mysql,学员的做题记录在hbase,经过分析,按时间先在mysql查询班级列表,每条记录包含该班的学员和计划做题的题目id,然后根据学员id和题目id去hbase里做统计查询,之后在使用java8的分组查出老师和校区维度的数据

@Service
public class JobStatServiceImpl implements JobStatService {
 
    @Autowired
    private ErrorHistoryMapper errorHistoryMapper;
 
    @Autowired
    private HBaseErrorHistoryMapper hBaseErrorHistoryMapper;
 
    @Autowired
    private CacheRedisService cacheRedisService;
 
    @Override
    public List getJobStatList(LocalDateTime beginDate, LocalDateTime endDate) {
        List jobStatList = errorHistoryMapper.getJobStatList(beginDate, endDate);
        if (jobStatList != null && !jobStatList.isEmpty()) {
            jobStatList.parallelStream().iterator().forEachRemaining(jobStatResult -> {
                List studentIds = strToList(jobStatResult.getStudentIds(), true);
                List sectionCodes = strToList(jobStatResult.getSectionCodes(), false);
                Map jobTrueCount = hBaseErrorHistoryMapper.getJobTrueCount(studentIds, sectionCodes);
                jobStatResult.setPlanNumber(getPlanNumber(jobStatResult.getSectionCodes()));//计划做题数
                jobStatResult.setDoneNumber(jobTrueCount.get("DONENUMBER"));//完成数
                jobStatResult.setTrueNumber(jobTrueCount.get("TRUENUMBER"));//正确数
            });//班级达标率
 
            System.err.println(JSON.toJSONString(jobStatList));
 
 
            Collection values = jobStatList.parallelStream().filter(Objects::nonNull)
                .collect(Collectors.groupingBy(JobStatResult::getTeacherId,
                Collectors.reducing(new JobStatResult(), (obj1, obj2) -> {
                    JobStatResult jobStatResult = new JobStatResult();
                    BeanUtils.copyProperties(obj2, jobStatResult);
                    jobStatResult.setPlanNumber(obj1.getPlanNumber() + obj2.getPlanNumber());
                    jobStatResult.setDoneNumber(obj1.getDoneNumber() + obj2.getDoneNumber());
                    jobStatResult.setTrueNumber(obj1.getTrueNumber() + obj2.getTrueNumber());
                    return jobStatResult;
                }))).values(); //老师达标率
 
            System.err.println(JSON.toJSONString(collect));
 
            Collection values = jobStatList.parallelStream().collect(Collectors.groupingBy(JobStatResult::getSchoolCode,
                    Collectors.reducing(new JobStatResult(), (obj1, obj2) -> {
                        obj1.setPlanNumber(obj1.getPlanNumber() + obj2.getPlanNumber());
                        obj1.setDoneNumber(obj1.getDoneNumber() + obj2.getDoneNumber());
                        obj1.setTrueNumber(obj1.getTrueNumber() + obj2.getTrueNumber());
                        return obj1;
                    }))).values();//校区达标率
 
            System.err.println(JSON.toJSONString(values));
 
        }
        return jobStatList;
    }
 
    /**
     * 计划做题数
     * @param str
     * @return
     */
    private Long getPlanNumber(String str) {
        AtomicLong planNumber = new AtomicLong(0);
        if (str == null || str.isEmpty()) {
            return planNumber.get();
        }
        String[] split = str.split(",");
        Arrays.asList(split).parallelStream().filter(s -> {
            if (s == null || s.isEmpty())
                return false;
            return true;
        }).forEach(s -> {
            Long chapterPlanNumber = cacheRedisService.getChapterPlanNumber(s);
            planNumber.addAndGet(chapterPlanNumber);
        });
        return planNumber.get();
    }
 
    /**
     * str转list
     * @param str
     * @param f
     * @return
     */
    private List strToList(String str, boolean f) {
        List list = f ? new ArrayList(){{add(0);}} : new ArrayList(){{add("kckm");}}; //随意设个值,防止为空报错
        if (str == null || str.isEmpty()) {
            return list;
        }
        String[] split = str.split(",");
        if (f) {
            List collect = Arrays.stream(split).filter(s -> {
                if (s == null || s.isEmpty())
                    return false;
                return true;
            }).mapToInt(Integer::valueOf).boxed().collect(Collectors.toList());
            list.addAll(collect);
        } else {
            List collect = Arrays.stream(split).filter(s -> {
                if (s == null || s.isEmpty())
                    return false;
                return true;
            }).collect(Collectors.toList());
            list.addAll(collect);
        }
        return list;
    }
}

使用Collectors.groupingBy按字段分组,然后使用Collectors.reducing进行合并,这里的java8的mapReduce和hadoop的mapReduce都是一种编程模型,map(映射)reduce(规约),我这里用的是list.parallelStream(),内部会自己创建多线程跑你自定义的任务()好像是用的jdk7的forkjoin框架),所以需要注意线程安全问题,我这里统计计划做题数的时候定义了一个AtomicLong原子类,可以保证多线程环境下累加的数据正确性

建议,hbase不支持事务,mysql+hbase不能保证数据一致性,最好hbase存一些比较久远的数据,新进的数据还是放mysql,这样关系型数据库也方便操作

你可能感兴趣的:(mysql和hbase关联查询统计及java8流处理实战)