R语言中级作业

主要内容

  • 探针ID转换
  • 表达矩阵处理
  • 任意基因任意癌症表达量和临床形状的关联
  • 任意基因任意癌症表达量分组的生存分析
  • 选取差异明显的基因的表达量绘制热图
  • 表达矩阵样本的相关性
  • 差异分析

作业 1

请根据R包 org.Hs.eg.db 找到下面ensembl 基因ID 对应的基因名(symbol)
ENSG00000000003.13
ENSG00000000005.5
ENSG00000000419.11
ENSG00000000457.12
ENSG00000000460.15
ENSG00000000938.11
提示:
library(org.Hs.eg.db)
g2s=toTable(org.Hs.egSYMBOL)
g2e=toTable(org.Hs.egENSEMBL)

org.Hs.eg.db数据包简介

##解法1
#使用suppressMessages运行的时候不显示提示信息
suppressMessages(library(org.Hs.eg.db))
#查看包里面的内容
keytypes(org.Hs.eg.db)

#导入ensembl
ensembl_id=c("ENSG00000000003.13", "ENSG00000000005.5","ENSG00000000419.11","ENSG00000000457.12","ENSG00000000460.15","ENSG00000000938.11")
ensembl_id=as.data.frame(ensembl_id)
ensembl_id

##用stringr这个包把.后面的内容去掉
library(stringr)
ensembl_id=str_split(ensembl_id$ensembl_id,pattern ="[.]",simplify = T)[,1]
ensembl_id=as.data.frame(ensembl_id)
ensembl_id

g2s=toTable(org.Hs.egSYMBOL)
g2e=toTable(org.Hs.egENSEMBL)
geneid=merge(ensembl_id,g2e,by='ensembl_id',all.x=T)
symbol=merge(geneid,g2s,by="gene_id",all.x=T)
symbol

作业 2

根据R包hgu133a.db找到下面探针对应的基因名(symbol)
1053_at
117_at
121_at
1255_g_at
1316_at
1320_at
1405_i_at
1431_at
1438_at
1487_at
1494_f_at
1598_g_at
160020_at
1729_at
177_at
提示:
library(hgu133a.db)
ids=toTable(hgu133aSYMBOL)
head(ids)

作业 3

找到R包CLL内置的数据集的表达矩阵里面的TP53基因的表达量,并且绘制在 progres.-stable分组的boxplot图
提示:
suppressPackageStartupMessages(library(CLL))
data(sCLLex)
sCLLex
exprSet=exprs(sCLLex)
library(hgu95av2.db)
想想如何通过 ggpubr 进行美化。

作业 4

找到BRCA1基因在TCGA数据库的乳腺癌数据集(Breast Invasive Carcinoma (TCGA, PanCancer Atlas))的表达情况

提示:使用http://www.cbioportal.org/index.do 定位数据集:http://www.cbioportal.org/datasets

作业 5

找到TP53基因在TCGA数据库的乳腺癌数据集的表达量分组看其是否影响生存

提示使用:http://www.oncolnc.org/

作业6

下载数据集GSE17215的表达矩阵并且提取下面的基因画热图

ACTR3B ANLN BAG1 BCL2 BIRC5 BLVRA CCNB1 CCNE1 CDC20 CDC6 CDCA1 CDH3 CENPF CEP55 CXXC5 EGFR ERBB2 ESR1 EXO1 FGFR4 FOXA1 FOXC1 GPR160 GRB7 KIF2C KNTC2 KRT14 KRT17 KRT5 MAPT MDM2 MELK MIA MKI67 MLPH MMP11 MYBL2 MYC NAT1 ORC6L PGR PHGDH PTTG1 RRM2 SFRP1 SLC39A6 TMEM45B TYMS UBE2C UBE2T

提示:根据基因名拿到探针ID,缩小表达矩阵绘制热图,没有检查到的基因直接忽略即可。

作业7

下载数据集GSE24673的表达矩阵计算样本的相关性并且绘制热图,需要标记上样本分组信息

作业8

找到 GPL6244 platform of Affymetrix Human Gene 1.0 ST Array 对应的R的bioconductor注释包,并且安装它!

options()$repos
options()$BioC_mirror 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
BiocManager::install("请输入自己找到的R包",ask = F,update = F)
options()$repos
options()$BioC_mirror

作业9

下载数据集GSE42872的表达矩阵,并且分别挑选出 所有样本的(平均表达量/sd/mad/)最大的探针,并且找到它们对应的基因。

作业10

下载数据集GSE42872的表达矩阵,并且根据分组使用limma做差异分析,得到差异结果矩阵

This entry was posted in 未分类 by ulwvfje. Bookmark the permalink.

你可能感兴趣的:(R语言中级作业)