在进行具体的服务调用之前,请参见以下步骤,完成准备工作:
创建阿里云AccessKeyId和AccessKeySecret。具体请参见创建AccessKey。
安装Java依赖。具体请参见安装Java依赖。
下载并在项目工程中引入Extension.Uploader工具类。
官方文档:
身份证信息
@RequestMapping(value = "/idCardInfo")
@ResponseBody
public Object idCardInfo(MultipartFile idcardFront) throws ClientException {
IClientProfile profile = DefaultProfile
.getProfile("cn-shanghai", "请填写您的accessKeyId", "请填写您的accessKeySecret");
DefaultProfile
.addEndpoint("cn-shanghai", "cn-shanghai", "Green", "green.cn-shanghai.aliyuncs.com");
IAcsClient client = new DefaultAcsClient(profile);
ImageSyncScanRequest imageSyncScanRequest = new ImageSyncScanRequest();
// 指定api返回格式
imageSyncScanRequest.setAcceptFormat(FormatType.JSON);
// 指定请求方法
imageSyncScanRequest.setMethod(MethodType.POST);
imageSyncScanRequest.setEncoding("utf-8");
//支持http和https
imageSyncScanRequest.setProtocol(ProtocolType.HTTP);
JSONObject httpBody = new JSONObject();
/**
* 设置要检测的场景
* ocr: ocr或者ocr卡证识别
*/
httpBody.put("scenes", Arrays.asList("ocr"));
/**
* 设置待检测图片, 一张图片一个task,最多支持100张图片同时检测,即需要构建100个task
* 多张图片同时检测时,处理的时间由最后一个处理完的图片决定。因此通常情况下批量检测的平均rt比单张检测的要长, 一次批量提交的图片数越多,rt被拉长的概率越高
* 这里以单张图片检测作为示例, 如果是批量图片检测,请自行构建多个task
* 图片二进制数据检测相对于互联网图片链接来说,多了一个上传步骤,上传后取返回的链接进行检测
*/
ClientUploader clientUploader = ClientUploader.getImageClientUploader(profile, false);
byte[] imageBytes = null;
String url = null;
try{
//这里读取本地文件作为二进制数据,当做输入做为示例, 实际使用中请直接替换成您的图片二进制数据
//imageBytes = FileUtils.readFileToByteArray();
//上传到服务端
url = clientUploader.uploadBytes(idcardFront.getBytes());
}catch (Exception e){
System.out.println("upload file to server fail.");
}
JSONObject task = new JSONObject();
task.put("dataId", UUID.randomUUID().toString());
task.put("url", url);
task.put("time", new Date());
httpBody.put("tasks", Arrays.asList(task));
//ocr卡证识别,设置识别卡证类型
JSONObject cardExtras = new JSONObject();
//身份证正面识别
cardExtras.put("card", "id-card-front");
//身份证反面
//cardExtras.put("card", "id-card-back");
httpBody.put("extras", cardExtras);
imageSyncScanRequest.setHttpContent(org.apache.commons.codec.binary.StringUtils.getBytesUtf8(httpBody.toJSONString()), "UTF-8", FormatType.JSON);
/**
* 请设置超时时间, 服务端全链路处理超时时间为10秒,请做相应设置
* 如果您设置的ReadTimeout小于服务端处理的时间,程序中会获得一个read timeout 异常
*/
imageSyncScanRequest.setConnectTimeout(3000);
imageSyncScanRequest.setReadTimeout(10000);
HttpResponse httpResponse = null;
try {
httpResponse = client.doAction(imageSyncScanRequest);
} catch (ServerException e) {
e.printStackTrace();
} catch (ClientException e) {
e.printStackTrace();
} catch (Exception e){
e.printStackTrace();
}
Map<String, Object> map = new HashMap<String, Object>();
//服务端接收到请求,并完成处理返回的结果
if(httpResponse != null && httpResponse.isSuccess()){
JSONObject scrResponse = JSON.parseObject(org.apache.commons.codec.binary.StringUtils.newStringUtf8(httpResponse.getHttpContent()));
//System.out.println(JSON.toJSONString(scrResponse));
int requestCode = scrResponse.getIntValue("code");
//每一张图片的检测结果
JSONArray taskResults = scrResponse.getJSONArray("data");
if (200 == requestCode) {
for (Object taskResult : taskResults) {
//单张图片的处理结果
int taskCode = ((JSONObject)taskResult).getIntValue("code");
//图片要检测的场景的处理结果, 如果是多个场景,则会有每个场景的结果
JSONArray sceneResults = ((JSONObject)taskResult).getJSONArray("results");
if(200 == taskCode){
for (Object sceneResult : sceneResults) {
String scene = ((JSONObject)sceneResult).getString("scene");
String suggestion = ((JSONObject)sceneResult).getString("suggestion");
//do something
//有识别出卡证信息
if("review" .equals(suggestion) && "ocr".equals(scene)){
JSONObject idCardInfo = ((JSONObject) sceneResult).getJSONObject("idCardInfo");
// System.out.println(idCardInfo.toJSONString());
map.put("name", idCardInfo.get("name"));
map.put("number", idCardInfo.get("number"));
}
}
}else{
//单张图片处理失败, 原因视具体的情况详细分析
//System.out.println("task process fail. task response:" + JSON.toJSONString(taskResult));
map.put("error","task process fail. task response:" + JSON.toJSONString(taskResult));
}
}
} else {
/**
* 表明请求整体处理失败,原因视具体的情况详细分析
*/
//System.out.println("the whole image scan request failed. response:" + JSON.toJSONString(scrResponse));
map.put("error", "the whole image scan request failed. response:" + JSON.toJSONString(scrResponse));
}
}
return map;
}
营业执照
@RequestMapping(value = "/businessLicenseInfo")
@ResponseBody
public Object businessLicenseInfo(MultipartFile file) throws ClientException {
IClientProfile profile = DefaultProfile
.getProfile("cn-shanghai", "请填写您的accessKeyId", "请填写您的accessKeySecret");
DefaultProfile
.addEndpoint("cn-shanghai", "cn-shanghai", "Green", "green.cn-shanghai.aliyuncs.com");
IAcsClient client = new DefaultAcsClient(profile);
ImageSyncScanRequest imageSyncScanRequest = new ImageSyncScanRequest();
// 指定api返回格式
imageSyncScanRequest.setAcceptFormat(FormatType.JSON);
// 指定请求方法
imageSyncScanRequest.setMethod(MethodType.POST);
imageSyncScanRequest.setEncoding("utf-8");
//支持http和https
imageSyncScanRequest.setProtocol(ProtocolType.HTTP);
JSONObject httpBody = new JSONObject();
/**
* 设置要检测的场景
* ocr: ocr或者ocr卡证识别
*/
httpBody.put("scenes", Arrays.asList("ocr"));
/**
* 设置待检测图片, 一张图片一个task,最多支持100张图片同时检测,即需要构建100个task
* 多张图片同时检测时,处理的时间由最后一个处理完的图片决定。因此通常情况下批量检测的平均rt比单张检测的要长, 一次批量提交的图片数越多,rt被拉长的概率越高
* 这里以单张图片检测作为示例, 如果是批量图片检测,请自行构建多个task
* 图片二进制数据检测相对于互联网图片链接来说,多了一个上传步骤,上传后取返回的链接进行检测
*/
ClientUploader clientUploader = ClientUploader.getImageClientUploader(profile, false);
byte[] imageBytes = null;
String url = null;
try{
//这里读取本地文件作为二进制数据,当做输入做为示例, 实际使用中请直接替换成您的图片二进制数据
//imageBytes = FileUtils.readFileToByteArray((File) file);
//上传到服务端
url = clientUploader.uploadBytes(file.getBytes());
}catch (Exception e){
System.out.println("upload file to server fail.");
}
JSONObject task = new JSONObject();
task.put("dataId", UUID.randomUUID().toString());
task.put("url", url);
task.put("time", new Date());
httpBody.put("tasks", Arrays.asList(task));
//ocr卡证识别,设置识别卡证类型
JSONObject cardExtras = new JSONObject();
// 图片类型:营业执照
cardExtras.put("card", "business-license");
httpBody.put("extras", cardExtras);
imageSyncScanRequest.setHttpContent(org.apache.commons.codec.binary.StringUtils.getBytesUtf8(httpBody.toJSONString()), "UTF-8", FormatType.JSON);
/**
* 请设置超时时间, 服务端全链路处理超时时间为10秒,请做相应设置
* 如果您设置的ReadTimeout小于服务端处理的时间,程序中会获得一个read timeout 异常
*/
imageSyncScanRequest.setConnectTimeout(3000);
imageSyncScanRequest.setReadTimeout(10000);
HttpResponse httpResponse = null;
try {
httpResponse = client.doAction(imageSyncScanRequest);
} catch (ServerException e) {
e.printStackTrace();
} catch (ClientException e) {
e.printStackTrace();
} catch (Exception e){
e.printStackTrace();
}
Map<String, Object> map = new HashMap<String, Object>();
//服务端接收到请求,并完成处理返回的结果
if(httpResponse != null && httpResponse.isSuccess()){
JSONObject scrResponse = JSON.parseObject(org.apache.commons.codec.binary.StringUtils.newStringUtf8(httpResponse.getHttpContent()));
//System.out.println(JSON.toJSONString(scrResponse));
int requestCode = scrResponse.getIntValue("code");
//每一张图片的检测结果
JSONArray taskResults = scrResponse.getJSONArray("data");
if (200 == requestCode) {
for (Object taskResult : taskResults) {
//单张图片的处理结果
int taskCode = ((JSONObject)taskResult).getIntValue("code");
//图片要检测的场景的处理结果, 如果是多个场景,则会有每个场景的结果
JSONArray sceneResults = ((JSONObject)taskResult).getJSONArray("results");
if(200 == taskCode){
for (Object sceneResult : sceneResults) {
String scene = ((JSONObject)sceneResult).getString("scene");
String suggestion = ((JSONObject)sceneResult).getString("suggestion");
//do something
//有识别出卡证信息
if("review" .equals(suggestion) && "ocr".equals(scene)){
JSONObject businessLicenseInfo = ((JSONObject) sceneResult).getJSONObject("businessLicenseInfo");
System.out.println(businessLicenseInfo.toJSONString());
map.put("regNum", businessLicenseInfo.get("regNum"));
}
}
}else{
//单张图片处理失败, 原因视具体的情况详细分析
//System.out.println("task process fail. task response:" + JSON.toJSONString(taskResult));
map.put("error","task process fail. task response:" + JSON.toJSONString(taskResult));
}
}
} else {
/**
* 表明请求整体处理失败,原因视具体的情况详细分析
*/
//System.out.println("the whole image scan request failed. response:" + JSON.toJSONString(scrResponse));
map.put("error", "the whole image scan request failed. response:" + JSON.toJSONString(scrResponse));
}
}
return map;
}