0 or 1(hdu2608)数学题

0 or 1

Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2391 Accepted Submission(s): 594


Problem Description
Solving problem is a interesting thing. Yifenfei like to slove different problem,because he think it is a way let him more intelligent. But as we know,yifenfei is weak in math. When he come up against a difficult math problem, he always try to get a hand. Now the problem is coming! Let we
define T(n) as the sum of all numbers which are positive integers can divied n. and S(n) = T(1) + T(2) + T(3)…..+T(n).
 

 

Input
The first line of the input contains an integer T which means the number of test cases. Then T lines follow, each line consists of only one positive integers n. You may assume the integer will not exceed 2^31.
 

 

Output
For each test case, you should output one lines of one integer S(n) %2. So you may see the answer is always 0 or 1 .
 

 

Sample Input
3
1
2
3
 

 

Sample Output
1
0
0
 
Hint
Hint S(3) = T(1) + T(2) +T(3) = 1 + (1+2) + (1+3) = 8 S(3) % 2 = 0
 
 
初看这道题目挺简单的不是吗0 or 1,关键是找到解题的入口
现在来分析一下:

【分析】
当N=10;
1
1 2
1 3
1 2 4
1 5
1 2 3 6
1 7
1 2 4 8
1 3 9
1 2 5 10
注意到不要单行相加,按来加,有10个1,5个2,3个3,2个4和5,1个6,7,8,9,10,
看到这里,我立刻就醒过省来了;
10/1=10,10/10=1,s+=10;
10/2=5,10/5=2,s+=5*2;
10/3=3,10/3=3,s+=3*3;
10/4=2,10/2=5,s+=(4+5)*2;//按区间算;
10/6=1,10/1=10,s+=(6+7+8+9+10)*1;//按区间算;

 
#include<stdio.h>

int count(int x)

{



    if(x==1)

        return 1;

    int i,j,w,m,s=x;

    for(i=2;i<=x;)

    {

        w=x/i;

        m=x/w;

        if(m==i)

        {

            i++;

            s+=(w*m)%2;

            s%=2;

        }

        else

        {

            int t=(i+m)*(m-i+1)/2;//连续区间,等差求和;(6+10)*(10-6+1)/2;

            s+=(t*w)%2;

            s%=2;

            i=m+1;//令i=x+1,退出;

        }

    }

    return s;

}

int main()

{

    int T,n;

    scanf("%d",&T);

    while(T--)

    {

        scanf("%d",&n);

        printf("%d\n",count(n));

    }

    return 0;

}

 

看了网上的另一种算法,发现代码更简洁思路更清晰,但是时间比我代码久,
分析是这样的;

分析:假设数n=2^k*p1^s1*p2^s2*p3^s3*...*pi^si;//k,s1...si>=0,p1..pi为n的素因子
所以T[n]=(2^0+2^1+...+2^k)*(p1^0+p1^1+...+p1^s1)*...*(pi^0+pi^1+...+pi^si);
显然(2^0+2^1+...+2^k)%2=1,所以T[n]是0或1就取决于(p1^0+p1^1+...+p1^s1)*...*(pi^0+pi^1+...+pi^si)
而p1...pi都是奇数(除2之外的素数一定是奇数),所以(pi^0+pi^1+...+pi^si)只要有一个si为奇数(i=1...i)
则(pi^0+pi^1+...+pi^si)%2=0,则T[n]%2=0//若si为奇数,则pi^si+1为偶数,pi^1+pi^2+...+pi^(si-1)为偶数(偶数个奇数和为偶数)
所以要T[n]%2=1,则所有的si为偶数,则n=2^(k%2)*m^2;//m=2^(k/2)*p1^(s1/2)*p2^(s2/2)*...*pi^(si/2)
所以只要n为某个数的平方或者某个数的平方和则T[n]%2=1,只要统计n的个数即可

简而言之:数为1的是某数的平方或某数平方的2倍,之前结果之和取余

 1 #include <stdio.h>

 2 #include<math.h>

 3 int main()

 4 {

 5     int t,sum;

 6     __int64 n,i,k;

 7     scanf("%d",&t);

 8     while(t--)

 9     {

10         scanf("%I64d",&n);

11         sum=k=(int) sqrt(n);//前面有几个平方

12         for(i=1;i<=k;i++)

13         {

14             if(i*i*2<=n)

15                 sum++;

16         }

17         sum=sum%2;

18         printf("%d\n",sum);

19     }

20     return 0;

21 }
View Code

or

 1 #include<iostream>

 2 #include<cstdio>

 3 #include<cmath>

 4 #include<algorithm>

 5 using namespace std;

 6 

 7 int main()

 8 {

 9     int t,n;

10     cin>>t;

11     while(t--)

12     {

13         cin>>n;

14         int sum=(int)sqrt(n*1.0)+(int)sqrt(n*1.0/2);

15         cout<<sum%2<<endl;

16     }

17     return 0;

18 }
View Code

 

 

 

 
 
 
 
 

你可能感兴趣的:(HDU)