- Trae使用教程,帮助您快速上手这款编程神器。
云上的阿七
云计算
Trae是一款由字节跳动推出的AI驱动集成开发环境(IDE),旨在通过智能代码补全、多模态交互以及对整个代码库的上下文分析等功能,帮助开发者更高效地编写代码。其强大的AI能力能够理解开发者的需求并提供精准的代码生成和修改建议。目前,Trae提供免费版本,集成了Claude-3.5-Sonnet和GPT-4o等主流大模型。rae使用教程,帮助您快速上手这款编程神器。一、安装Trae访问官网:前往Tr
- 【「暴富幻觉」与「圈层陷阱」的深层解构】
调皮的芋头
神经网络深度学习机器学习
「暴富幻觉」与「圈层陷阱」的深层解构:大祥哥事件背后的社会心理图谱一、认知错位:达克效应下的「圈层跃升」陷阱虚假能力曲线当普通人突然获得巨额财富时(如大祥哥B站年收入破千万),其社会地位感知曲线会陡峭上升,但实际认知能力仍处于原有水平。这种剪刀差导致**达克效应(D-Keffect)**显现——越是缺乏社会经验的人,越容易高估自身判断力。圈层符号的认知绑架骗子通过私人飞机合影(伪造)、米其林餐厅包
- LLM大模型提示工程Prompt Engineering
Langchain
promptlangchain私有化大模型人工智能产品经理ai大模型LLM
在LLM中影响词汇的分布主要通过两种方式,一种是通过提示(Prompting),另外一种就是通过训练(Training)。提示是影响词汇分布最简单的方法,通过给LLM输入提示文本(有时会包含指令和示例)使得词汇的分布概率发生变化。以上一篇中提到的例子说明,最初的语句是“我写信给农场,希望他们送我一个宠物,他们送给我一只()“词汇的分布如下:代码语言:javascript**复制牛0.1羊0.2狗0
- win32汇编环境,网络编程入门之十
一品人家
win32汇编网络编程入门教程汇编
;让我们继续上一教程的内容,上一教程里主要是应用WinHTTP的函数的基本应用;在这一教程里,我们将这些乱码就成可识的,同时研究一下如何读大容量的网页,比如超过1万字节的网页;win32汇编环境,网络编程入门之十;让我们继续上一教程的内容,上一教程里主要是应用WinHTTP的函数的基本应用;在这一教程里,我们将这些乱码就成可识的,同时研究一下如何读大容量的网页,比如超过1万字节的网页;>>>>>>
- 跟着外贸高手学跟单!分享6大实用跟单技巧
在外贸行业中,订单的成交95%依赖于高效的跟单技巧。无论是分析客户行为,还是灵活运用价格策略,每一步都可能成为促成交易的关键。本文将结合外贸实战经验,分享6大核心跟单技巧,并介绍如何通过ZohoBooks的智能化外贸管理工具提升跟单效率与成功率。技巧1:深度分析客户,精准锁定需求核心方法:通过海关数据、社交媒体(如领英、脸书)及搜索引擎(谷歌)挖掘客户的采购历史、合作供应商、竞争对手等关键信息,并
- 医疗器械企业出海,如何应对序列号跟踪、批次管理难题?
全球医疗器械市场规模持续扩大,越来越多的中国医疗器械企业选择走出国门,参与全球竞争。在出海过程中,欧盟、美国等国家均要求企业建立完整的追溯体系,这给国内医疗企业带来了新的挑战。这该如何破局?ZohoBooks以智能库存管理、全球化合规支持和多系统集成能力,可以成为医疗器械企业出海的“数字化护航者”。一、医疗器械出海的三大管理痛点1、序列号跟踪:从生产到终端的全链条追溯难题医疗器械的序列号需贯穿生产
- 0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS
百度云大模型gpu
01什么是大模型推理引擎大模型推理引擎是生成式语言模型运转的发动机,是接受客户输入prompt和生成返回response的枢纽,也是拉起异构硬件,将物理电能转换为人类知识的变形金刚。大模型推理引擎的基本工作模式可以概括为,接收包括输入prompt和采样参数的并发请求,分词并且组装成batch输入给引擎,调度GPU执行前向推理,处理计算结果并转为词元返回给用户。和人类大脑处理语言的机制类似,大模型首
- AI Agent赛道:昙花一现还是生态革命?6大咖拆解泡沫与未来
人工智能比特币区块链web3
作者:CRYPTO币圈不设防币圈不设防第四期Space总结:AIAgent赛道还能火多久?在Web3华语主持人茄哥的主持下,第四期《币圈不设防》围绕“AIAgent赛道还能火多久?”展开深度探讨。本期嘉宾阵容强大,包括Uweb校长于佳宁、TradingBaseAI创始人Mr.Z、BuilderLogEarn、区块链爱好者flyawei、投研博主清风#BTC,以及社区领袖小智。以下是讨论的核心观点总
- python基础之--面相对象--OOP基本特性
暴龙胡乱写博客
python开发语言人工智能
python基础之–面相对象–OOP基本特性文章目录python基础之--面相对象--OOP基本特性一,OOP基本特性1.1封装1.2继承/派生1.2.1基础概念1.2.3继承实现1.3多态1.4对象对成员的操作(补充)1.5私有属性1.6重写魔术方法二,super函数2.1基本使用2.2super().\__init__()一,OOP基本特性OOP的四大基本特性是封装、继承、多态和抽象。1.1封
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- 大模型实战—你的个人AI数字大脑Khoj
不二人生
大模型人工智能大模型
Khoj是你的开源个人AI伴侣,提供即时答案。Khoj轻松地深入知识,简化复杂信息,整合你的个人背景,并根据你的独特需求量身定制响应。在线问题:如果你有一个问题需要从互联网获取最新的信息,Khoj可以进行在线搜索,找到相关答案。例如,查询当前的天气情况或某个新闻事件的最新动态。本地笔记和文档:如果你有很多保存的笔记、PDF文件、Markdown文档、GitHub仓库或Notion文件,Khoj可以
- Dify1.01版本vscode 本地环境搭建运行实践
hamish-wu
vscode编辑器dify大模型pythonflask
dify是python编写的低代码AI开发平台,是常用的大模型开发平台。本文基于最新的1.0.1版本实践完成,有需要的可以私信交流。咨询免费,详细文档及视频需要一定成本,大概相当于节约的时间成本。搭建环境windows11开发工具vscode搭建步骤:1.Startthedocker-composestackwindow环境下运行docker命令,需要下载docker官网镜像,会遇到timeout
- 《Astro 3.0 岛屿架构实战:用「零JS」打造百万PV内容网站》
前端极客探险家
架构javascript开发语言
文章目录一、传统内容站点的性能困局1.1企业级项目性能调研(N=200+)1.2Astro核心优势矩阵二、十分钟构建高性能内容站点2.1项目初始化2.2核心配置文件三、六大企业级场景实战3.1场景一:多框架组件混用3.2场景二:交互增强型Markdown四、性能优化深度解析4.1优化前后数据对比4.2关键优化策略五、企业级架构方案5.1内容站点技术栈5.2流量突增应对方案六、调试与监控体系6.1性
- Java 大视界 -- Java 大数据在智慧农业精准灌溉与施肥决策中的应用(144)
青云交
大数据新视界Java大视界java大数据智慧农业精准灌溉施肥决策数据分析机器学习
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 基于 Java 的大数据机器学习模型的多模态融合技术与应用(143)
青云交
大数据新视界Java大视界java大数据机器学习多模态融合智能安防智能客服数据处理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 字节跳动离职后,转行学起了AI大模型!该说不说,真的香!!
小城哇哇
人工智能AI大模型语言模型agiaiLLM转行
个人自我介绍鄙人出生于南方小乡镇,为了走出小镇,在当地够拼够努力,不是自夸,确确实实也算得上“别人家的小孩”,至少在学习这件事情少,没有要家里人操过心。高考特别顺利,一个老牌985,具体哪个学校就不说了,不想给母校丢脸。毕业后,也算是“风光”地进入了字节跳动。做的是运维测试。在职期间刚入职的时候真的信心满满⛽️,但才3天就感受到了互联网头部公司的强度不是一般的大。明面上的早十晚八工作制完全不存在,
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
鸡腿爱学习
人工智能学习自然语言处理服务器数据库
大家好,我是JackBytes,一个专注于将人工智能应用于日常生活的半吊子程序猿,平时主要分享AI、NAS、Docker、搞机技巧、开源项目等。在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进
- 卫星网络仿真平台:IPLOOK赋能空天地一体化通信新生态
爱浦路 IPLOOK
运维
卫星仿真平台在6G技术加速演进与天地一体化网络建设的大背景下,卫星通信作为地面网络的重要补充,正成为全球通信覆盖的关键支撑。IPLOOK凭借其深厚的技术积累与创新实践,推出的卫星网络仿真平台(SCEPS),不仅填补了行业技术空白,更通过多维度功能设计与产学研深度合作,为构建空天地一体化网络提供了全栈式解决方案。一、卫星仿真平台:技术架构与核心功能IPLOOK卫星仿真平台基于“分层式、组件化、插件化
- 【大模型学习路线】从月薪6K到年薪35W,普通二本生转行大模型的逆袭之路:我的500小时崩溃实录与实战秘籍(附保姆级学习路线)
AGI大模型学习
学习人工智能大模型应用程序员AI大模型AI大模型
摘要:26岁机械专业零基础转大模型,被面试官羞辱“非科班别做梦”,5个月死磕源码,现拿下3个大厂offer。踩过所有新人会踩的坑,总结出普通人高效突围的4个阶段+7个杀手级项目。(文末送自研《大模型避坑指南》+120G学习资料包)一、血泪教训:这些弯路我替你走了(小白必看)2023年3月12日,我在工地上画完第108张CAD图纸后,突然收到大学班群消息:“XX同学入职字节AILab,年薪50W+”
- 目前常用的机器视觉工具库总结,选一个适合自己的机器视觉库才是最好的。
yuanpan
计算机视觉图像处理aiAI编程
以下是常用机器视觉工具的总结,包括它们的特点、优点、缺点和是否付费:1.Halcon特点:由MVTec公司开发,专注于工业机器视觉。提供强大的图像处理、模式匹配、OCR和3D视觉功能。优点:高性能,适合复杂的工业应用。提供图形化编程界面(HDevelop),用户友好。支持多种硬件设备(如相机、采集卡)。缺点:付费:价格较高,适合企业级用户。开放性较低,定制化能力有限。学习曲线较高,文档复杂。是否付
- 【微服务】SpringBoot整合LangChain4j 操作AI大模型实战详解
小码农叔叔
AI大模型实战与应用springboot入门到精通LangChain4jLangChain4j总结LangChain4j使用LangChain4j实战LangChain4j详解
目录一、前言二、Langchain4j概述2.1Langchain4j介绍2.1.1Langchain4j是什么2.1.2主要特点2.2Langchain4j核心组件介绍2.3Langchain4j核心优势2.4Langchain4j核心应用场景三、SpringBoot整合LangChain4j组件使用3.1前置准备3.1.1获取apikey3.1.2导入基础依赖3.1.3添加配置文件3.2对话能
- QT学习笔记(常用控件)
四代目 水门
QT学习笔记qt学习笔记
QT学习笔记一、QTGUI类继承体系QObject(基类)└──QWidget(所有可视化控件基类)├──QAbstractButton(按钮类基类)│├──QPushButton│├──QRadioButton│└──QCheckBox├──QFrame(带边框控件基类)│└──QLabel├──QLayout(布局管理器基类)└──其他控件类...核心类说明:QObject:所有QT对象的基类
- 大模型提示词工程师的自我修养-应用二(RAG数据合成与数据多样性问题的解决) -(专题4)
AI专题精讲
大模型专题系列人工智能
1.生成数据大型语言模型(LLMs)具有生成连贯文本的强大能力。通过有效的提示策略,可以引导模型生成更好、一致且更有事实依据的响应。LLMs也特别适用于生成数据,这对于进行各种实验和评估非常有用。例如,我们可以用它来为情感分类器生成快速样本,如下所示:提示词生成10个情感分析的示例。示例分为正面或负面类别。生成2个负面示例和8个正面示例。示例如下格式:Q:A:输出Q:我刚刚得到了最棒的消息!A:正
- 字节跳动算法高频题:动态规划最优模板
知识产权13937636601
计算机算法动态规划
本文系统梳理字节跳动近三年算法面试中的动态规划(DP)高频题型,提炼出适用于80%场景的通用解题模板。通过背包问题、字符串处理、状态压缩等六大核心模块解析,结合跳槽、股票交易、编辑距离等15道真题案例,揭示动态规划的状态转移方程构建规律与维度优化技巧,助您在面试中实现时间复杂度与空间复杂度的双重最优解。第一章动态规划基础框架1.1动态规划三大特征特征判定标准真题案例重叠子问题递归树中存在重复计算节
- C语言如何 生成随机数?(过程逐步分析)
祁同伟.
#C语言c语言
先给大家分享一个查阅函数的网站:cplusplus.com-TheC++ResourcesNetwork我们通过一道题讲解:实现1-100的猜数字游戏先将代码大框架罗列出来:voidmenu(){printf("**********1.play***********\n");printf("**********0.eixt***********\n");}voidgame(){}voidtest(
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- 27寸显示屏,字体看着比较小,如何调大?>?
Gin387
学习
win+i打开设置点击辅助功能,然后选择文本大小,我的27寸,2k显示屏,然后字体设置的是110%的大小看着是比较舒服的。注意点:1.有些设置可能是需要重启之后才可以,更改的,比如我发的上一博客,(关于如何去掉桌面图标下面的文字的黑色背影的方法)这个就是需要重启之后才可以设置的东西。
- [Android] NFC卡模拟 9.05 模拟NFC门禁卡 电梯卡等 手机代替卡片
私人珍藏库
智能手机
[Android]NFC卡模拟链接:https://pan.xunlei.com/s/VOM4VZZGlLh_SLa9m6Mwh4YBA1?pwd=aeqp#【应用名称】NFC卡模拟【应用版本】9.05【软件大小】2.7mb【适用型号】安卓【应用说明】功能强大且的NFC卡模拟器,可模拟各类门禁卡、电梯卡、部分公司(工厂)工卡或饭卡、部分学校饭卡、部分图书馆借书卡等各类IC卡,用手机替代卡片去刷门禁
- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla