- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 颜色识别基于高斯混合模型(GMM)的查找表分类器(LUT)
吃个糖糖
Halcon人工智能机器学习
文章目录create_class_gmm创建高斯混合模型(GMM)以进行分类任务add_samples_image_class_gmm提取训练样本,并将其添加到高斯混合模型(GMM)的训练数据集中train_class_gmm训练一个高斯混合模型(GMM)clear_class_gmm清除模型create_class_lut_gmm基于已训练的高斯混合模型(GMM)创建一个查找表(LUT),用于分
- 老子的“道可道”和孔子的“朝闻道夕死可矣”的道指的是什么?
儒家哲学
“道”,最早是由老子在《道德经》里面先提出来,最后也被包括儒家在家的众多学说门派所接受,孔子的“朝闻道夕死可矣”的道,也是这么来的。每个时代都有每个时代的解读,今天我结合自己的一些经验和思考,用白话来给大家讨论一下。道:万物之理,是世间万事万物运行的规律。其中又可以分为两个方面。一方面是可以用数学公式表示出来的规律(比如万有引力公式:F=GmM/r^2),另外一方面是只能用文字或语言归纳的道理,比
- 高斯混合模型聚类(GMM)matlab实现
唐维康
高斯混合模型聚类
GaussianMixtureModel,就是假设数据服从MixtureGaussianDistribution,换句话说,数据可以看作是从数个GaussianDistribution中生成出来的。实际上,我们在K-means和K-medoids两篇文章中用到的那个例子就是由三个Gaussian分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian分布(也叫做正态(Normal)分
- K-means(K均值聚类算法)算法笔记
Longlongaaago
机器学习机器学习kmeans算法
K-means(K均值聚类算法)算法笔记K-means算法,是比较简单的无监督的算法,通过设定好初始的类别k,然后不断循环迭代,将给定的数据自动分为K个类别。事实上,大家都知道K-means是怎么算的,但实际上,它是GMM(高斯混合模型)的一个特例,其而GMM是基于EM算法得来的,所以本文,将对K-means算法的算法思想进行分析。算法流程K-means算法的算法流程非常简单,可以从下图进行讲解(
- 学习笔记GMM(其三)
天鹰_2019
天鹰(中南财大——博士研究生)E-mail:[
[email protected]]在通过前两期对广义矩估计GMM基本理论了解的基础上,下面要做的就是如何在STATA中实现操作。本文所使用的数据是Arellano&Bond(1991)中的数据,具体数据可以在网上进行下载(webuseabdata)xtsetidyear----告诉Stata该数据为面板数据----browsegenlnemp=log
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 2000-2022年上市公司全要素生产率测算GMM法(含原始数据+测算代码do文档+计算结果)
m0_71334485
数据#上市公司#企业上市公司全要素生产率全要素生产率上市公司
2000-2022年上市公司全要素生产率测算GMM法(含原始数据+测算代码do文档+计算结果)1、时间:2000-2022年2、范围:上市公司3、指标:证券代码、证券简称、统计截止日期、固定资产净额、year、股票简称、报表类型编码、折旧摊销、支付给职工以及为职工支付的现金、购建固定资产无形资产和其他长期资产支付的现金、营业总收入、营业收入、营业成本、销售费用、管理费用、财务费用、上市日期、成立日
- 大数据期望最大化(EM)算法:从理论到实战全解析
星川皆无恙
机器学习与深度学习大数据人工智能大数据大数据算法深度学习人工智能
文章目录大数据期望最大化(EM)算法:从理论到实战全解析一、引言概率模型与隐变量极大似然估计(MLE)Jensen不等式二、基础数学原理条件概率与联合概率似然函数Kullback-Leibler散度贝叶斯推断三、EM算法的核心思想期望(E)步骤最大化(M)步骤Q函数与辅助函数收敛性四、EM算法与高斯混合模型(GMM)高斯混合模型的定义分量权重E步骤在GMM中的应用M步骤在GMM中的应用五、实战案例
- FAIR-Wave2Vec 2.0模型介绍
科学禅道
PyTorch人工智能语音识别
1.自动语音识别(ASR)领域介绍自动语音识别(ASR)领域的重大突破在过去几年中取得了显著进展,以下是一些关键的发展和里程碑:深度学习的引入:2012年前后,随着深度神经网络(DNN)在语音识别领域的应用,准确率有了显著提高。相较于传统的GMM-HMM模型,DNN能够更好地捕捉复杂的语音模式。卷积神经网络(CNN)和循环神经网络(RNN)的应用:CNN在声学建模上显示出优势,能够捕获局部特征;而
- 动态面板数据模型及Eviews实现
多美丽
模型介绍动态面板数据模型,即面板数据模型的解释项中纳入被解释变量的滞后项,以反映动态滞后效应。参数估计方法GMM广义矩估计数据准备1998-2017年中国30个省数据因变量:afdi自变量:ageopenlaborEviews实现!数据录入方式与面板模型数据录入方式不同1、file-new-workfileF1F22、右键-newobject-series-因变量afdiF3F43、把自变量按照2
- 人工智能知识
奥利奥利奥利奥
人工智能
11语音处理语音识别系统框架:特征提取(mfcc、傅立叶)->声学模型(高斯混合)->语言模型->解码搜索特征提取:梅尔频率倒谱系数、傅里叶变换声学模型:高斯混合模型-隐马尔可夫模型14多智能体系统自主性、主动性、反应能力、社会能力产生式表示:规则:IFATHEMB(置信度默认100)事实:(Li,Age,40,默认0.1)框架表示法:框架(事物)-槽(各个方面)-侧面-值框架表示法是一种适应性强
- sample 算子_Halcon算子解释 - osc_poeqd6cw的个人空间 - OSCHINA - 中文开源技术交流社区...
weixin_39791322
sample算子
Halcon算子解释大全Halcon/Visionpro视频教程和资料,请访问重码网,网址:http://www.211code.comChapter1:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型
- HALCON算子函数总结(上)
逆风路途
视觉
HALCON算子函数总结(上)**HALCON算子函数——Chapter1:Classification**Chapter_1_:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型来计算一个特征矢量的类。
- 工智能基础知识总结--聚类算法
北航程序员小C
深度学习专栏人工智能学习专栏机器学习专栏算法聚类机器学习
什么是聚类算法聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。高斯混合聚类(GMM)GMM在EM算法一节介绍。下面K-Means的推导也会用到GMM。K均值聚类(K
- 【非监督学习 02】高斯混合模型
一碗姜汤
机器学习机器学习人工智能
高斯混合模型(GuassianMixedModel,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。图5.6是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图中所有的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据明显分为两簇,因此只用
- EM算法和VAE的学习笔记
瓴龍
学习笔记深度学习笔记EM算法机器学习VAE深度学习
文章目录摘要EM算法流程EM算法对GMM的参数估计EM算法的证明EM算法的另一种理解VAE参考文献摘要这是我学习EM算法(Expectation-MaximizationAlgorithm)和VAE(VariationalAuto-Encoder)的学习笔记,首先总结了EM算法流程,然后举了一个例子,用EM算法对GMM进行参数估计,然后证明了EM算法的正确性,然后推导出EM算法的另外一种解释,以引
- 【机器学习】循环神经网络(四)-应用
十年一梦实验室
机器学习rnn人工智能深度学习神经网络
五、应用-语音识别5.1语音识别问题详述语音识别的经典方法GMM+HMM框架5.2深度模型详述DNN-HMM结构循环神经网络与CTC技术结构用于语音识别问题六、自然语言处理RNN-LM建模方法6.1中文分词6.2词性标注6.3命名实体识别详述LSTM+CRF进行命名实体识别的方法6.4文本分类6.5自动摘要6.6机器翻译seq2seq技术解决机器翻译问题seq2seq技术解决机器翻译问题是指利用序
- 图像分割-Grabcut法(C#)
VB.Net
C#EmguCV计算机视觉图像处理EmguCVOpenCvGrabcut
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。本文的VB版本请访问:图像分割-Grabcut法-CSDN博客GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免
- 图像分割-Grabcut法
VB.Net
EmguCV计算机视觉图像处理Grabcut
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。本文的C#版本请访问:图像分割-Grabcut法(C#)-CSDN博客GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素
- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- EM算法及公式推导
XI-C-Li
概率图模型算法机器学习人工智能
含隐变量的概率图模型的参数估计问题在解决含隐变量的概率图模型的参数估计问题时,一种简单的想法是取使其对数边际似然最大的作为估计的参数。为观测变量的观测数据,是一个向量,为隐变量的取值(但实际上无法观测)是一个向量,需要通过求和(积分)的形式去除。但函数中存在对数函数内部带有求和的形式,这样非常难以求导。比如在高斯混合模型中,隐变量是一维离散的变量。12......k......其中均是待估计参数,
- GMM 模型与EM算法求解详细推导
请痛捶我
机器学习GMM
1.高斯模型与高维高斯模型介绍高斯模型也就是正态分布模型,该模型最早可见于我们的高中数学教材中。闻其名知其意,正态分布是自然界中普遍存在的一种分布。比如,考试成绩,人的智力水平等等。都是大致呈现为正态分布。其概率密度函数为其中参数为μ,σ2,都是一维标量。对于高维高斯模型,与一维类似,只是自变量变成了多维,是一个向量。其概率密度函数为其中参数为μ,Σ,μ是向量,Σ是协方差矩阵,是个对称阵。2.高斯
- 【数据不完整?用EM算法填补缺失】期望值最大化 EM 算法:睹始知终
Debroon
算法
期望值最大化算法EM:睹始知终算法思想算法推导算法流程E步骤:期望M步骤:最大化陷入局部最优的原因算法应用高斯混合模型(GaussianMixtureModel,GMM)问题描述输入输出Python代码实现算法思想期望值最大化方法,是宇宙演变、物种进化背后的动力。如果一个公司在制定年终奖标准时,把每个员工一半的奖金和公司价值观挂钩,人们就会背诵创始人每个语录—整个公司都会自动迭代寻找最优解,每个人
- OpenCV | 背景建模
squirrel快乐敲码
opencv人工智能计算机视觉
背景建模逐差法:由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。混合高斯模型在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM
- 无监督学习(下)
歌者文明
机器学习人工智能算法
1.高斯混合模型(GMM)(1)简单概念高斯混合模型是一种概率模型,它假定实例是由多个参数未知的高斯分布的混合生成的。从单个高斯分布生成的所有实例都形成一个集群,通常看起来像一个椭圆。每个集群都可以由不同的椭圆形状,大小,密度和方向。高斯模型的均值代表集群的中心,方差代表方向这个模型假定一个数据集是从K个高斯分布的集合中产生,但是每个集合都有一个权重,代表产生一个实例到数据集的可能性或者贡献(我暂
- VAE变分自编码器原理推导+Python代码实现
篝火者2312
机器学习人工智能笔记python机器学习开发语言深度学习
1、前言变分自编码器是近些年较火的一个生成模型,我个人认为其本质上仍然是一个概率图模型,只是在此基础上引入了神经网络。本文将就变分自编码器(VAE)进行简单的原理讲解和数学推导。2、引入2.1、高斯混合模型生成模型,可以简单的理解为生成数据(不止,但我们暂且就这么理解它)\boxed{(不止,但我们暂且就这么理解它)}(不止,但我们暂且就这么理解它)。假如现在我们有样本数据,而我们发现这些样本符合
- stata F值缺失_stata面板数据回归操作之GMM
weixin_39614637
stataF值缺失stata将数据集变量名称导出stata行业变量怎么赋值
新手面板数据回归之GMM的stata操作步骤广义矩估计(GeneralizedMethodofMoments即GMM)原理就是回归!就是一种高级点的回归!我也是新手,也有很多不太懂的地方。断断续续学习了两个月,看了很多文献和公众号拼凑整理的,放到这里就是大家可以一起修正和补充。数据情况:样本:31个省份的面板数据年份:2009-2016年八年数据因变量Y自变量:八个X一、数据整理、导入和保存第一步
- 2020.9.15丨Chip-seq结果可视化之peak检测(上)
穆易青
生物信息R语言Chip-seq
macs2运行参数macs2callpeak-tK1_ChIPed_S1_L007_R1.bam-cK1_Input_S5_L007_R1.bam-fBAM-gmm-nK1-B-q0.01-t-c实验组和对照组结果-f输入文件格式-g参考基因组有效大小,人类选择hs,也可以根据基因组大小直接输入数值-n输出前缀-B输出bdg格式文件,可以上传到UCSC生成峰图-qq值,默认0.05-pp值,未校正
- stata面板数据gmm回归_STATA面板数据回归解读.ppt
weixin_39693438
stata面板数据gmm回归
STATA面板数据回归解读STATA在实证研究中的应用刘永东中国科学院农业政策研究中心OutlineSTATA数据分析基础软件名称最新版本安装文件大小SAS9.1.33GSPSS15.01CDStata10.094MGAUSS8.025M计量经济学专用Limdep/Nlogit9.0/4.03MShazam10.090MEviews6.0100MWinrat6.021MTSP5.0Rfree30M
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro