- MongoDB成为最好NoSQL数据库的原因是什么?思维导图 代码示例(java 架构)
用心去追梦
mongodbnosqljava
MongoDB成为最受欢迎的NoSQL数据库之一,有多个因素促成了其成功和广泛采用。以下是从不同角度分析MongoDB成为最好NoSQL数据库的原因:MongoDB成为最好NoSQL数据库的原因文档型数据模型灵活模式:支持动态模式,无需预定义固定的表结构,易于适应快速变化的需求。嵌套结构:允许复杂的数据类型如数组、嵌入式文档,简化了数据建模。高性能与可扩展性读写性能:通过索引优化、内存映射文件等技
- 科技快讯 | 2025商业新愿景;豆包大模型1.5 Pro正式发布;ChatGPT每月产生260吨二氧化碳
最新科技快讯
科技
巨头扎堆入局,人形机器人量产渐行渐近2025年,人形机器人赛道热度持续升温,工信部《人形机器人创新发展指导意见》指出,2025年人形机器人创新体系初步建立,整机产品实现批量生产,并在多个场景应用。受访人士认为,人形机器人发展类似于智能手机初期,未来将逐步成熟迭代。专家预计,理想人形机器人可能需十年以上时间才能实现。信息来源:证券时报。特朗普考虑让这两人收购TikTok,除了马斯克还有他美国总统特朗
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 虹膜识别和人脸识别存在信息安全问题吗?
烁月_o9
其他安全web安全网络
虹膜识别和人脸识别都存在信息安全问题。虹膜识别的信息安全问题•数据存储风险:虹膜识别系统需要存储用户的虹膜模板数据。如果存储服务器的安全防护措施不足,黑客可能会入侵服务器,窃取这些高度敏感的虹膜数据。一旦数据泄露,黑客就有可能利用这些数据伪造身份,绕过虹膜识别系统。•设备安全漏洞:虹膜识别设备本身可能存在安全漏洞。例如,某些设备可能会受到恶意软件的攻击。这些恶意软件可以篡改设备的固件,在用户进行虹
- 提取图片颜色信息转数据信息
~夕上林~
图像处理matlab
提取图片颜色信息转数据信息背景:给定原始图片如下,数据范围为0~2π\piπ,如何通过给定图片,提取出来对应的数据信息。目录提取图片颜色信息转数据信息分析颜色模型图像预处理图像修复图片重建和裁剪提取数据分析原始图片存在两个数据图Transmittedwave和Reflectedwave,接下来将其简称为c图和d图。两数据图的颜色范围和数据范围均一致,之后以c图进行分析:项目Value长lll2.2
- 大模型项目落地时,该如何估算模型所需GPU算力资源
kcarly
大模型知识乱炖认识系列gpu算力深度学习自然语言处理AIGC
近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。不喜欢过程的可以直接跳到HF上提供的模型计算器要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。大模型的规模、参数的理解模型参数单位我们的项目中客户之前测试过Qwen1.5-110B的模型,效果还比较满意。(Qwen还是国产模型中比较稳定的也是很多项目的首选)模型中
- PaddleSeg 从配置文件和模型 URL 自动化运行预测任务
如若123
自动化运维人工智能深度学习
gitclonehttps://github.com/PaddlePaddle/PaddleSeg.git#在ipynb里面运行cdPaddleSegimportsyssys.path.append('/home/aistudio/work/PaddleSeg')importos#配置文件夹路径folder_path="/home/aistudio/work/PaddleSeg/configs"#
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 全网最最实用--教你用gradio搭网页、部署模型等(代码粘贴即用、不讲虚的)
绒绒毛毛雨
大模型算法microsoft前端语言模型人工智能ai
文章目录〇前言一、构建网页1.各个组件介绍a.文本输入和输出b.图像输入和输出c.音频输入和输出d.视频输入和输出e.文件上传和下载f.滑块(`Slider`)g.单选按钮(`Radio`)h.复选框(`CheckboxGroup`)j.数据表格(`Dataframe`)2.一个网页示例代码a.按钮使用指南(事件处理和回调)3.整个网页代码b.整个网页展示二、构建ai任务a.构建一个自己的大语言模
- 『大模型笔记』AI自动化编程工具汇总[持续更新ING]!
AI大模型前沿研究
大模型笔记大模型AI自动化工具bolt.newCursorV0
『大模型笔记』AI自动化编程工具汇总!文章目录一.Bolt.new(开源AI驱动全栈Web开发工具)1.1.Bolt.new介绍1.2.编程小白如何打造自己的导航网站二.Cursor(人工智能代码编辑器)2.1.Cursor入门教程2.2.Cursor左侧布局设置和VSCode一样2.3.Cursor效率之道:Agent模式+7大高级技巧详解三.Windsurf(颠覆Cursor的全新工具)3.1
- Vue 框架深度剖析:原理、应用与最佳实践
秋夜Autumn
vue.js前端javascript
目录一、Vue框架简介二、Vue的安装与基本使用(一)安装(二)基本使用三、Vue组件(一)创建组件(二)组件通信四、Vue模板语法(一)插值(二)指令(三)计算属性和侦听器五、Vue过渡与动画(一)过渡类名(二)过渡组件六、VueRouter(一)安装与配置(二)使用路由七、Vuex(一)核心概念(二)使用Vuex八、Vue项目优化(一)性能优化(二)代码优化九、Vue生态系统(一)UI框架(二
- Lambda离线实时分治架构深度解析与实战
喜欢猪猪
架构
一、引言在大数据技术日新月异的今天,Lambda架构作为一种经典的数据处理模型,在应对大规模数据应用方面展现出了强大的能力。它整合了离线批处理和实时流处理,为需要同时处理批量和实时数据的应用场景提供了成熟的解决方案。本文将对Lambda架构的演变、核心组件、工作原理及痛点进行深度解析,并通过Java代码实现一个实战实例。二、Lambda架构的演变Lambda架构是由Storm的作者NathanMa
- “大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
绒绒毛毛雨
大数据挖掘数据挖掘mapreduce人工智能
文章目录O背景知识1数据挖掘2邦费罗尼原则3TF.IDF4哈希函数5分布式文件系统一、MapReduce基本介绍1.Map任务2.按键分组3.Reduce任务4.节点失效处理5.小测验:在一个大型语料库上有100个map任务和若干reduce任务:二、基于MapReduce的基本运算1.选择(Selection)2.交(Intersection)3.并(Union)4.补(Difference)5
- 什么是vue.js组件开发,我们需要做哪些准备工作?
大懒猫软件
vue.js
Vue.js是一个非常流行的前端框架,用于构建用户界面。组件开发是Vue.js的核心概念之一,通过将界面拆分为独立的组件,可以提高代码的可维护性和复用性。以下是一个详细的Vue.js组件开发指南,包括基础概念、开发流程和代码示例。一、Vue.js组件开发基础1.组件的基本结构Vue.js组件是一个独立的、可复用的UI元素。每个组件都有自己的模板、逻辑和样式。组件的基本结构如下:vue复制{{tit
- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- Topaz Video AI——视频修复
爱研究的小牛
AIGC—视频AIGC
一、TopazVideoAI介绍及使用TopazVideoAI是一款基于人工智能的视频增强和修复软件,主要用于提升视频质量、去噪、插帧和分辨率提升。它利用深度学习技术对视频进行智能化处理,使得视频看起来更加清晰和流畅。TopazVideoAI特别适合那些需要修复旧视频、提升低分辨率视频质量的用户。二、TopazVideoAI的主要功能视频去噪:通过AI模型去除视频中的噪点,使画面更加干净。分辨率提
- 元数据驱动的设想
吾爱乐享
pythonpython
本文永久更新地址:1.背景针对相似结构的表单,为了提高ui自动化编写效率,减少以减少重复工作,设想是否可以设计一个针对neoUI2.0通过元数据驱动的方式适应不同业务对象的测试框架2.设计元数据模型-字段名-字段类型-是否必填-是否只读-默认值-业务逻辑(可选,后期扩展)3.构建自动化测试框架利用现有的RF框架已实现的功能,通过实体名称打开对应实体的表单关键L进入【进入菜单】关键字进入【点击新建业
- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- 行业模板|DataEase企业管理大屏模板推荐
FIT2CLOUD飞致云
开源数据可视化DataEase模板市场数据大屏企业管理
DataEase开源BI工具于2022年6月发布模板市场(https://templates.dataease.cn),并于2024年1月新增适用于DataEasev2版本的模板分类。模板市场旨在为DataEase用户提供专业、美观、拿来即用的大屏模板,方便用户根据自身的业务需求和使用场景选择对应的大屏模板,并且在优质模板的基础上轻松制作自己的仪表板及数据大屏。截至2024年12月18日,Data
- 2.渲染管线——应用阶段
无敌最俊朗@
渲染管线unity
渲染管线的应用阶段(ApplicationStage)是渲染流程的第一步,负责准备和提交渲染所需的数据。这个阶段由应用程序(如游戏引擎、3D建模软件)控制,开发者在这里定义场景中的物体、材质、灯光、相机等,并将这些数据传递给图形API(如OpenGL、DirectX、Vulkan),以便进入后续的渲染管线。认真讲解:应用阶段的核心任务场景数据的准备:应用程序需要加载3D模型、纹理、材质、灯光等信息
- 证券量化交易选择合适的编程语言
jcsx
量化numpypandaspyqtservletjavascript
在证券量化交易中,选择合适的编程语言至关重要,因为它直接影响到开发效率、运行速度和策略的灵活性。常用的编程语言有几个,它们各自有不同的优势和应用场景。以下是一些在量化交易中常用的编程语言:PythonPython是目前量化交易中最流行的编程语言之一,特别是在金融数据分析和模型开发中,广泛被使用。Python的流行主要有以下原因:数据处理能力:Python有非常强大的数据处理库,如pandas(数据
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- Java多线程与高并发专题——JMM
黄雪超
大数据面试java开发语言JMM
引入上一篇我们讲到在并发场景中,存在结果问题和性能问题,其中结果问题主要是因为没有保障可见性、原子性、有序性等导致的。这三者在编程领域属于共性问题,所有的编程语言都会遇到,Java在诞生之初就支持多线程,所以肯定有保障它们的技术方案。理解Java解决并发问题的方案,对于了解其他语言的解决方案有触类旁通的效果。在Java中,对应的解决方案就是JMM(Java内存模型)。什么是JMM?为了更准确的理解
- nginx常用配置及调优
大白菜和MySQL
linuxnginxnginx服务器网络
文章目录nginx编译安装php编译安装整合nginx连接php测试LNMP环境的PHP服务是否可以连接mysqlnginx配置ssl证书及http跳转https编译安装nginx后新添加模块隐藏nginx版本号和标识配置nginx运行用户和cpu亲和性优化nginx事件处理模型优化nginx最多可打开文件数优化nginx进程最大并发连接数虚拟主机(servername)和location匹配规则
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>