- 【C++】——精细化哈希表架构:理论与实践的综合分析
m0_74825238
面试学习路线阿里巴巴c++散列表架构java
先找出你的能力在哪里,然后再决定你是谁。——塔拉·韦斯特弗《你当像鸟飞往你的山》目录1.C++与哈希表:核心概念与引入2.哈希表的底层机制:原理与挑战2.1核心功能解析:效率与灵活性的平衡2.2哈希冲突的本质:问题与应对策略2.3开散列与闭散列:两大解决方案的比较3.闭散列的精确实现:从设计到优化3.1整体框架设计:面向扩展的架构3.2仿函数的灵活性:高效哈希的关键3.3插入操作:冲突检测与位置分
- 解锁区块链智能合约的未来:构建支持仿真测试的MySQL环境
墨夶
数据库学习资料1区块链智能合约mysql
在区块链技术快速发展的今天,智能合约作为其核心组件之一,正在改变我们处理交易、管理资产乃至构建商业逻辑的方式。然而,对于许多开发者而言,在正式部署之前如何有效地测试和验证智能合约的行为仍然是一个不小的挑战。本文将详细介绍如何设计并实现一个基于MySQL的支持智能合约仿真执行的环境,使您能够在传统的关系型数据库中体验到智能合约的强大功能。一、为什么选择MySQL?尽管以太坊等平台提供了专门用于编写和
- 解锁区块链智能合约版本管理的新纪元——MySQL架构下的革新之道
墨夶
数据库学习资料1区块链智能合约mysql
在区块链技术蓬勃发展的今天,智能合约作为去中心化应用(DApps)的核心组件,其版本管理和升级机制的重要性日益凸显。然而,传统的智能合约一旦部署便难以更改的特性给开发者带来了不小的挑战。面对这一难题,如何构建一个既能够保障数据安全又便于维护和更新的智能合约管理系统成为了业界关注的焦点。本文将深入探讨基于MySQL数据库设计支持智能合约版本控制的解决方案,旨在为读者提供一套完整的、易于实施的技术框架
- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- 原创LabVIEW与台达EtherCAT运动控制卡完整测试程序代码
LabVIEW热爱者
labview
利用LabVIEW调用台达提供的库函数,控制台达EtherCAT运动控制卡,实现初始化、IO、运动控制、模拟量读取等功能。LabVIEW2013以上版本可以打开。可实现单轴、多轴运动控制。
- 【从漏洞到防护:浅谈Docker不容忽视的安全问题】
OpsEye
docker网络安全安全运维
从漏洞到防护:浅谈Docker不容忽视的安全问题文章目录前言一、Docker存在的漏洞二、场景案例三、安全基线标准总结前言在网络时代,几乎所有编写的软件和应用都存在潜在的漏洞,想要完全没有漏洞的应用是几乎不可能实现的,当然Docker也不例外。Docker容器技术在提供高效、可移植的软件部署环境的同时,也带来了一些安全挑战。针对Docker自身的漏洞,黑客的攻击手段层出不穷,给企业带来了多方面的挑
- 挑战20天学完JavaSE第四天——方法的定义、调用和方法重载
呆呆why care
挑战20天学完javaSEjava笔记改行学it程序人生
Java方法是语句的集合,它们在一起执行一个功能。方法是解决一类问题的步骤的有序组合。方法包含于类或对象中。方法在程序中被创建,在其他地方被引用。设计方法的原则:方法的本意是功能块,就是实现某个功能的语句块的集合。我们设计方法的时候,最好保持方法的原子性,就是一个方法只完成1个功能,这样利于我们后期的扩展。方法的命名规则:首字母小写驼峰命名方法的定义Java的方法类似于其它语言的函数,是一段用来完
- Linux驱动开发实战之SRIO驱动(一)
niuTaylor
linux驱动开发c语言开发语言
活动发起人@小虚竹想对你说:这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!提醒:在发布作品前,请将不需要的内容删除。LinuxSRIO驱动开发终极指南:从基础到实战一、SRIO协议基础SRI
- 黄金屋 #2 我应该将产品开源吗?
_tison
开源
“开源”(Open-Source),如同“自由软件”(FreeSoftware)一样,凭借其有意为之的模糊赢得了广泛传播。泛泛而谈开源,甚至是将所谓开源硬件、开源文档、开放设计等都归入开源的范畴,很容易丧失焦点。本文不讨论任意个体或组织开发的任意软件是否应该开源,而是聚焦在企业研发的商业软件产品应当采取的开源策略。从著名的《大教堂与集市》文集当中第四篇《魔法锅》开始。其中4.6节“闭源的理由”写到
- 技术革命、需求升级与商业生态迭代——基于开源AI大模型与智能商业范式的创新研究
说私域
人工智能开源小程序微信零售
摘要:本文以技术哲学与商业生态系统理论为分析框架,通过质性研究与案例分析法,系统阐释第三次与第四次科技革命如何通过技术范式创新引发用户需求跃迁,进而驱动商业生态系统的结构性变革。研究聚焦开源AI大模型、AI智能名片、S2B2C商城及小程序源码等前沿技术工具,解构其如何重构"技术赋权-需求进化-商业物种爆发"的价值传导链条。研究发现:技术革命通过创造新需求空间、重构价值网络拓扑结构、降低创新参与门槛
- 认识数学建模,什么是数学建模
ymchuangke
从零开始学数学建模数学建模
目录一、什么是数学建模?二、数学建模的核心思想三、数学建模的应用领域四、数学建模的基本步骤五、常用的数学建模方法和工具六、数学建模的挑战与未来发展一、什么是数学建模?数学建模(MathematicalModeling)是一种利用数学语言、结构和方法,对实际问题进行描述、简化、分析和求解的过程。其核心在于通过将复杂的现实世界问题转化为可操作的数学形式,从而利用数学理论和计算技术对其进行深入研究和解决
- 《今日AI-人工智能-编程日报》-源自2025年3月21日
小亦编辑部
人工智能
一、AI编程领域最新动态AI编程工具崛起,程序员职业面临挑战Anthropic首席执行官DarioAmodei预言,未来一年内,90%的代码将由AI生成,传统程序员的工作可能被大幅替代。最新发布的AI编程模型(如Claude3.7、Sonnet3.7)在初级开发评估中表现优异,得分率超过60%,部分模型甚至在全球程序员排名中位列前0.1%。字节跳动的Trae海外版接入Claude3.7和GPT-4
- AlphaFolding填补蛋白质动态结构预测空白!复旦大学等提出4D扩散模型,成果入选AAAI 2025
HyperAI超神经
ScienceAI人工智能深度学习机器学习扩散模型蛋白质结构AI4S4D
蛋白质的功能很大程度上取决于其3D结构。19世纪中期,科学界普遍认为蛋白质结构是固定的、刚性的,类似「锁与钥匙」模型(lock-and-keymodel),即蛋白质与配体的结合是由固定的三维结构决定的。然而,当DanielKoshland提出酶与底物结合时会发生构象变化的观点后,传统思维开始受到挑战。1980年代,分子动力学模拟(MolecularDynamics,MD)兴起,首次从计算角度揭示了
- DeepSeek来袭!低代码+AI竟让程序员摸鱼接私单月入5W!
工业甲酰苯胺
低代码人工智能
目录一、引言:开启低代码+AI新时代二、DeepSeek与低代码、AI的关联(一)DeepSeek简介(二)低代码开发概述(三)AI赋能低代码三、低代码+AI开启私单赚钱大门(一)成功案例剖析(二)私单项目类型(三)赚钱模式解析四、实战:利用DeepSeek接私单(一)工具准备与环境搭建(二)需求分析与项目规划(三)低代码开发实战(四)AI技术融合应用(五)项目测试与交付五、挑战与应对策略(一)技
- 时间序列分析的军火库:AutoTS、Darts、Kats、PaddleTS、tfts 和 FancyTS解析
赛卡
大数据人工智能深度学习python概率论数学建模
引言:时间序列分析的现代挑战时间序列分析在多个领域中扮演着关键角色,包括工程、金融、气象、工业预测等。随着开源工具的快速发展,开发者可以通过多种库快速实现时间序列预测与分析。本文将对AutoTS、Darts、Kats、PaddleTS、tfts和FancyTS六大主流库进行详细解析,并提供代码示例,帮助你根据实际需求选择最佳工具。核心库技术解析与场景化实践1.AutoTS:自动化时间序列预测技术亮
- 数据分析面临的三大挑战该如何解决
銨靜菂等芐紶
数据挖掘大数据数据分析
转载自品略图书馆http://www.pinlue.com/article/2020/09/0712/2611202048648.html有效的分析已成为决定性因素,很明显,掌握它的人会蓬勃发展。但是,实现这一目标的过程并非没有障碍。最常见的数据分析挑战是什么?公司如何自信地应对它们?下面就来介绍一下。1、浏览预算限制数据分析领导者需要在当下采取行动,但同时也需要考虑未来。平衡这些需求要求他们在制
- LakeHouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊
科杰科技
大数据数据仓库
摘要:当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。KeenDataLakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架
- CCF CSP 历年真题 C语言版 满分代码集合 (至2021.9 持续更新中
JY_0329
CCFc语言开发语言cspccf算法
CCFCSP历年真题C语言版满分代码集合(全部原创)2021-9-1数组推导2021-9-2非零段划分2021-4-1灰度直方图2021-4-2领域均值2020-12-1期末预测之安全指数2020-12-2期末预测之最佳阈值2020-9-1称检测点查询2020-9-2风险人群筛查2020-6-1线性分类器2020-6-2稀疏向量2019-12-1报数2019-12-2回收站选址2019-9-1小明
- Kafka深度解析
GarfieldEr007
Kafka/MQKafka深度解析MQ
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接)。本文转发自Jason’sBlog,原文链接http://www.jasongj.com/2015/01/02/Kafka深度解析背景介绍Kafka简介Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能高吞吐率。即使在非常廉价
- Fuzzy Control | Degree of Membership Function
斐夷所非
mathematics隶属度函数
注:本文为“隶属度函数”相关文章合辑。如有内容异常,请看原文。隶属函数(MembershipFunction),又称归属函数或模糊元函数,是用于表征模糊集合的重要数学工具。在经典集合中,元素与集合的关系只有属于或不属于两种明确情况,分别用111和000表示。但对于模糊集合而言,元素与集合的隶属关系具有不分明性。隶属函数正是为描述元素uuu对论域UUU上的一个模糊集合的隶属关系而引入的,它将用区间[
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 【Java】TCP网络编程:从可靠传输到Socket实战
郑州吴彦祖772
【Java】网络原理java并发编程tcp/ip
活动发起人@小虚竹想对你说:这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!提醒:在发布作品前,请将不需要的内容删除。各位看官,大家早安午安晚安呀~~~如果您觉得这篇文章对您有帮助的话欢迎您一
- 【运维的七种武器】
搞技术的季
运维
最近项目陆续增加,相应的运维方面压力逐步攀升,经常出现打包和发布失败的情况,给交付团队带来困扰。运维技术是随着软件技术的发展同步发展起来的,当前复杂的软件技术架构对运维的稳定和高效带了了很大挑战。一、运维平台发展史:1.第一阶段,以专业化网管工具为代表,包括网络设备、主机、数据库、中间件、存储等进行专业监控管理的各种专业化工具。2.第二阶段,以ITIL流程化管理为代表的综合网管,通过事件、服务、流
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- 生成式对抗网络在人工智能艺术创作中的应用与创新研究
辛迎蕌
人工智能
摘要本文深入探究生成式对抗网络(GAN)在人工智能艺术创作领域的应用与创新。通过剖析GAN核心原理,阐述其在图像、音乐、文学等艺术创作中的实践,分析面临的挑战与创新方向,呈现GAN对艺术创作模式的变革,为理解人工智能与艺术融合发展提供全面视角。一、引言在人工智能与艺术深度融合的时代浪潮中,生成式对抗网络(GAN)作为一项突破性技术,为艺术创作带来了全新的可能性。它打破传统创作边界,以独特的对抗学习
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- 浮点数Float概述
CoderIsArt
C++11浮点数
浮点数:概述浮点数是计算机中表示分数和极大/极小数字的一种基本方式。它们在科学计算、图形学以及其他需要高精度和大范围的领域中广泛应用。以下是浮点数相关关键概念和挑战的总结:1.什么是浮点数?浮点数是一种在计算机中表示实数(包括极大和极小的数字)的方式。它们由三部分组成:符号位:表示数字的正负。尾数(或有效数字):表示数字的有效位数。指数:决定数字的规模(或大小)。浮点数的值通过以下公式计算:值=尾
- AI人工智能 Agent:在赋能传统行业中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在赋能传统行业中的应用1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与发展1.1.2人工智能的三次浪潮1.1.3人工智能的现状与挑战1.2传统行业面临的困境1.2.1效率低下1.2.2成本高企1.2.3决策滞后1.3人工智能赋能传统行业的必要性1.3.1提高效率1.3.2降低成本1.3.3优化决策2.核心概念与联系2.1人工智能Agent的定义2.1.1Age
- 锥面箍接/快拆环突破!拆装效率飙升200%,终结机器人螺丝拆装时代
CodePatentMaster
机器人人工智能
颠覆性散热革新!宇树科技弹性散热架构让四足机器人稳定性提升40%核心价值杭州宇树科技通过弹性接触式散热仓盖与导流件协同设计,实现计算单元散热效率提升32%且抗冲击性能增强40%,攻克四足机器人高热工况下的核心组件易损难题[1][4]。一、技术原理深度剖析1.痛点定位:高动态场景下的散热与防护两难当前四足机器人的计算单元面临两大挑战:散热瓶颈:传统刚性固定导致接触热阻增加30%以上(见热成像对比数据
- API item_get 在电商平台的核心作用以及如何测试
index_all
数据供应商京东apijava大数据开发语言
在电商行业蓬勃发展的今天,跨平台运营已成为众多商家的必然选择。然而,随之而来的数据孤岛问题却成为了制约电商企业进一步发展的瓶颈。为了解决这一问题,电商大数据平台应运而生,而item_getAPI作为获取商品详情的关键接口,在其中扮演着至关重要的角色。本文将深入探讨item_getAPI在跨平台电商数据整合中的应用与优势,为电商企业在数据驱动的道路上提供有力支持。一、跨平台电商数据整合的挑战在跨平台
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f