DirectedAcyclicGraph

有向无环图,所有的树都是有向无环图

/*
 * Copyright 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package androidx.coordinatorlayout.widget;

import static androidx.annotation.RestrictTo.Scope.LIBRARY;

import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.annotation.RestrictTo;
import androidx.collection.SimpleArrayMap;
import androidx.core.util.Pools;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;

/**
 * A class which represents a simple directed acyclic graph.
 *
 * @param  Class for the data objects of this graph.
 *
 * @hide
 */
@RestrictTo(LIBRARY)
public final class DirectedAcyclicGraph {
    private final Pools.Pool> mListPool = new Pools.SimplePool<>(10);
    private final SimpleArrayMap> mGraph = new SimpleArrayMap<>();

    private final ArrayList mSortResult = new ArrayList<>();
    private final HashSet mSortTmpMarked = new HashSet<>();

    /**
     * Add a node to the graph.
     *
     * 

If the node already exists in the graph then this method is a no-op.

* * @param node the node to add */ public void addNode(@NonNull T node) { if (!mGraph.containsKey(node)) { mGraph.put(node, null); } } /** * Returns true if the node is already present in the graph, false otherwise. */ public boolean contains(@NonNull T node) { return mGraph.containsKey(node); } /** * Add an edge to the graph. * *

Both the given nodes should already have been added to the graph through * {@link #addNode(Object)}.

* * @param node the parent node * @param incomingEdge the node which has is an incoming edge to {@code node} */ public void addEdge(@NonNull T node, @NonNull T incomingEdge) { if (!mGraph.containsKey(node) || !mGraph.containsKey(incomingEdge)) { throw new IllegalArgumentException("All nodes must be present in the graph before" + " being added as an edge"); } ArrayList edges = mGraph.get(node); if (edges == null) { // If edges is null, we should try and get one from the pool and add it to the graph edges = getEmptyList(); mGraph.put(node, edges); } // Finally add the edge to the list edges.add(incomingEdge); } /** * Get any incoming edges from the given node. * * @return a list containing any incoming edges, or null if there are none. */ @Nullable public List getIncomingEdges(@NonNull T node) { return mGraph.get(node); } /** * Get any outgoing edges for the given node (i.e. nodes which have an incoming edge * from the given node). * * @return a list containing any outgoing edges, or null if there are none. */ @Nullable public List getOutgoingEdges(@NonNull T node) { ArrayList result = null; for (int i = 0, size = mGraph.size(); i < size; i++) { ArrayList edges = mGraph.valueAt(i); if (edges != null && edges.contains(node)) { if (result == null) { result = new ArrayList<>(); } result.add(mGraph.keyAt(i)); } } return result; } /** * Checks whether we have any outgoing edges for the given node (i.e. nodes which have * an incoming edge from the given node). * * @return true if the node has any outgoing edges, false * otherwise. */ public boolean hasOutgoingEdges(@NonNull T node) { for (int i = 0, size = mGraph.size(); i < size; i++) { ArrayList edges = mGraph.valueAt(i); if (edges != null && edges.contains(node)) { return true; } } return false; } /** * Clears the internal graph, and releases resources to pools. */ public void clear() { for (int i = 0, size = mGraph.size(); i < size; i++) { ArrayList edges = mGraph.valueAt(i); if (edges != null) { poolList(edges); } } mGraph.clear(); } /** * Returns a topologically sorted list of the nodes in this graph. This uses the DFS algorithm * as described by Cormen et al. (2001). If this graph contains cyclic dependencies then this * method will throw a {@link RuntimeException}. * *

The resulting list will be ordered such that index 0 will contain the node at the bottom * of the graph. The node at the end of the list will have no dependencies on other nodes.

*/ @NonNull public ArrayList getSortedList() { mSortResult.clear(); mSortTmpMarked.clear(); // Start a DFS from each node in the graph for (int i = 0, size = mGraph.size(); i < size; i++) { dfs(mGraph.keyAt(i), mSortResult, mSortTmpMarked); } return mSortResult; } private void dfs(final T node, final ArrayList result, final HashSet tmpMarked) { if (result.contains(node)) { // We've already seen and added the node to the result list, skip... return; } if (tmpMarked.contains(node)) { throw new RuntimeException("This graph contains cyclic dependencies"); } // Temporarily mark the node tmpMarked.add(node); // Recursively dfs all of the node's edges final ArrayList edges = mGraph.get(node); if (edges != null) { for (int i = 0, size = edges.size(); i < size; i++) { dfs(edges.get(i), result, tmpMarked); } } // Unmark the node from the temporary list tmpMarked.remove(node); // Finally add it to the result list result.add(node); } /** * Returns the size of the graph */ int size() { return mGraph.size(); } @NonNull private ArrayList getEmptyList() { ArrayList list = mListPool.acquire(); if (list == null) { list = new ArrayList<>(); } return list; } private void poolList(@NonNull ArrayList list) { list.clear(); mListPool.release(list); } }

你可能感兴趣的:(DirectedAcyclicGraph)