算法概述
算法:基于密度的局部离群点检测(lof算法)
输入:样本集合D,正整数K(用于计算第K距离)
输出:各样本点的局部离群点因子
过程:
- 计算每个对象与其他对象的欧几里得距离
- 对欧几里得距离进行排序,计算第k距离以及第K领域
- 计算每个对象的可达密度
- 计算每个对象的局部离群点因子
- 对每个点的局部离群点因子进行排序,输出。
算法Java源码
本算法包括两个类文件,一个是:DataNode,另一个是:OutlierNodeDetect
DataNode的源码
package com.bigdata.ml.outlier; import java.util.ArrayList; import java.util.List; /** * * @author zouzhongfan * */ public class DataNode { private String nodeName; // 样本点名 private double[] dimensioin; // 样本点的维度 private double kDistance; // k-距离 private ListkNeighbor = new ArrayList ();// k-领域 private double distance; // 到给定点的欧几里得距离 private double reachDensity;// 可达密度 private double reachDis;// 可达距离 private double lof;// 局部离群因子 public DataNode() { } public DataNode(String nodeName, double[] dimensioin) { this.nodeName = nodeName; this.dimensioin = dimensioin; } public String getNodeName() { return nodeName; } public void setNodeName(String nodeName) { this.nodeName = nodeName; } public double[] getDimensioin() { return dimensioin; } public void setDimensioin(double[] dimensioin) { this.dimensioin = dimensioin; } public double getkDistance() { return kDistance; } public void setkDistance(double kDistance) { this.kDistance = kDistance; } public List getkNeighbor() { return kNeighbor; } public void setkNeighbor(List kNeighbor) { this.kNeighbor = kNeighbor; } public double getDistance() { return distance; } public void setDistance(double distance) { this.distance = distance; } public double getReachDensity() { return reachDensity; } public void setReachDensity(double reachDensity) { this.reachDensity = reachDensity; } public double getReachDis() { return reachDis; } public void setReachDis(double reachDis) { this.reachDis = reachDis; } public double getLof() { return lof; } public void setLof(double lof) { this.lof = lof; } }
OutlierNodeDetect.java的源码如下:
package com.bigdata.ml.outlier; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; /** * 离群点分析 * * @author zouzhongfan * 算法:基于密度的局部离群点检测(lof算法) * 输入:样本集合D,正整数K(用于计算第K距离) * 输出:各样本点的局部离群点因子 * 过程: * 1)计算每个对象与其他对象的欧几里得距离 * 2)对欧几里得距离进行排序,计算第k距离以及第K领域 * 3)计算每个对象的可达密度 * 4)计算每个对象的局部离群点因子 * 5)对每个点的局部离群点因子进行排序,输出。 **/ public class OutlierNodeDetect { private static int INT_K = 5;//正整数K // 1.找到给定点与其他点的欧几里得距离 // 2.对欧几里得距离进行排序,找到前5位的点,并同时记下k距离 // 3.计算每个点的可达密度 // 4.计算每个点的局部离群点因子 // 5.对每个点的局部离群点因子进行排序,输出。 public ListgetOutlierNode(List allNodes) { List kdAndKnList = getKDAndKN(allNodes); calReachDis(kdAndKnList); calReachDensity(kdAndKnList); calLof(kdAndKnList); //降序排序 Collections.sort(kdAndKnList, new LofComparator()); return kdAndKnList; } /** * 计算每个点的局部离群点因子 * @param kdAndKnList */ private void calLof(List kdAndKnList) { for (DataNode node : kdAndKnList) { List tempNodes = node.getkNeighbor(); double sum = 0.0; for (DataNode tempNode : tempNodes) { double rd = getRD(tempNode.getNodeName(), kdAndKnList); sum = rd / node.getReachDensity() + sum; } sum = sum / (double) INT_K; node.setLof(sum); } } /** * 计算每个点的可达距离 * @param kdAndKnList */ private void calReachDensity(List kdAndKnList) { for (DataNode node : kdAndKnList) { List tempNodes = node.getkNeighbor(); double sum = 0.0; double rd = 0.0; for (DataNode tempNode : tempNodes) { sum = tempNode.getReachDis() + sum; } rd = (double) INT_K / sum; node.setReachDensity(rd); } } /** * 计算每个点的可达密度,reachdis(p,o)=max{ k-distance(o),d(p,o)} * @param kdAndKnList */ private void calReachDis(List kdAndKnList) { for (DataNode node : kdAndKnList) { List tempNodes = node.getkNeighbor(); for (DataNode tempNode : tempNodes) { //获取tempNode点的k-距离 double kDis = getKDis(tempNode.getNodeName(), kdAndKnList); //reachdis(p,o)=max{ k-distance(o),d(p,o)} if (kDis < tempNode.getDistance()) { tempNode.setReachDis(tempNode.getDistance()); } else { tempNode.setReachDis(kDis); } } } } /** * 获取某个点的k-距离(kDistance) * @param nodeName * @param nodeList * @return */ private double getKDis(String nodeName, List nodeList) { double kDis = 0; for (DataNode node : nodeList) { if (nodeName.trim().equals(node.getNodeName().trim())) { kDis = node.getkDistance(); break; } } return kDis; } /** * 获取某个点的可达距离 * @param nodeName * @param nodeList * @return */ private double getRD(String nodeName, List nodeList) { double kDis = 0; for (DataNode node : nodeList) { if (nodeName.trim().equals(node.getNodeName().trim())) { kDis = node.getReachDensity(); break; } } return kDis; } /** * 计算给定点NodeA与其他点NodeB的欧几里得距离(distance),并找到NodeA点的前5位NodeB,然后记录到NodeA的k-领域(kNeighbor)变量。 * 同时找到NodeA的k距离,然后记录到NodeA的k-距离(kDistance)变量中。 * 处理步骤如下: * 1,计算给定点NodeA与其他点NodeB的欧几里得距离,并记录在NodeB点的distance变量中。 * 2,对所有NodeB点中的distance进行升序排序。 * 3,找到NodeB点的前5位的欧几里得距离点,并记录到到NodeA的kNeighbor变量中。 * 4,找到NodeB点的第5位距离,并记录到NodeA点的kDistance变量中。 * @param allNodes * @return List */ private List getKDAndKN(List allNodes) { List kdAndKnList = new ArrayList (); for (int i = 0; i < allNodes.size(); i++) { List tempNodeList = new ArrayList (); DataNode nodeA = new DataNode(allNodes.get(i).getNodeName(), allNodes .get(i).getDimensioin()); //1,找到给定点NodeA与其他点NodeB的欧几里得距离,并记录在NodeB点的distance变量中。 for (int j = 0; j < allNodes.size(); j++) { DataNode nodeB = new DataNode(allNodes.get(j).getNodeName(), allNodes .get(j).getDimensioin()); //计算NodeA与NodeB的欧几里得距离(distance) double tempDis = getDis(nodeA, nodeB); nodeB.setDistance(tempDis); tempNodeList.add(nodeB); } //2,对所有NodeB点中的欧几里得距离(distance)进行升序排序。 Collections.sort(tempNodeList, new DistComparator()); for (int k = 1; k < INT_K; k++) { //3,找到NodeB点的前5位的欧几里得距离点,并记录到到NodeA的kNeighbor变量中。 nodeA.getkNeighbor().add(tempNodeList.get(k)); if (k == INT_K - 1) { //4,找到NodeB点的第5位距离,并记录到NodeA点的kDistance变量中。 nodeA.setkDistance(tempNodeList.get(k).getDistance()); } } kdAndKnList.add(nodeA); } return kdAndKnList; } /** * 计算给定点A与其他点B之间的欧几里得距离。 * 欧氏距离的公式: * d=sqrt( ∑(xi1-xi2)^2 ) 这里i=1,2..n * xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标 * n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)), * 其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式. * @param A * @param B * @return */ private double getDis(DataNode A, DataNode B) { double dis = 0.0; double[] dimA = A.getDimensioin(); double[] dimB = B.getDimensioin(); if (dimA.length == dimB.length) { for (int i = 0; i < dimA.length; i++) { double temp = Math.pow(dimA[i] - dimB[i], 2); dis = dis + temp; } dis = Math.pow(dis, 0.5); } return dis; } /** * 升序排序 * @author zouzhongfan * */ class DistComparator implements Comparator { public int compare(DataNode A, DataNode B) { //return A.getDistance() - B.getDistance() < 0 ? -1 : 1; if((A.getDistance()-B.getDistance())<0) return -1; else if((A.getDistance()-B.getDistance())>0) return 1; else return 0; } } /** * 降序排序 * @author zouzhongfan * */ class LofComparator implements Comparator { public int compare(DataNode A, DataNode B) { //return A.getLof() - B.getLof() < 0 ? 1 : -1; if((A.getLof()-B.getLof())<0) return 1; else if((A.getLof()-B.getLof())>0) return -1; else return 0; } } public static void main(String[] args) { java.text.DecimalFormat df =new java.text.DecimalFormat("#.####"); ArrayList dpoints = new ArrayList (); double[] a = { 2, 3 }; double[] b = { 2, 4 }; double[] c = { 1, 4 }; double[] d = { 1, 3 }; double[] e = { 2, 2 }; double[] f = { 3, 2 }; double[] g = { 8, 7 }; double[] h = { 8, 6 }; double[] i = { 7, 7 }; double[] j = { 7, 6 }; double[] k = { 8, 5 }; double[] l = { 100, 2 };// 孤立点 double[] m = { 8, 20 }; double[] n = { 8, 19 }; double[] o = { 7, 18 }; double[] p = { 7, 17 }; double[] q = { 8, 21 }; dpoints.add(new DataNode("a", a)); dpoints.add(new DataNode("b", b)); dpoints.add(new DataNode("c", c)); dpoints.add(new DataNode("d", d)); dpoints.add(new DataNode("e", e)); dpoints.add(new DataNode("f", f)); dpoints.add(new DataNode("g", g)); dpoints.add(new DataNode("h", h)); dpoints.add(new DataNode("i", i)); dpoints.add(new DataNode("j", j)); dpoints.add(new DataNode("k", k)); dpoints.add(new DataNode("l", l)); dpoints.add(new DataNode("m", m)); dpoints.add(new DataNode("n", n)); dpoints.add(new DataNode("o", o)); dpoints.add(new DataNode("p", p)); dpoints.add(new DataNode("q", q)); OutlierNodeDetect lof = new OutlierNodeDetect(); List nodeList = lof.getOutlierNode(dpoints); for (DataNode node : nodeList) { System.out.println(node.getNodeName() + " " + df.format(node.getLof())); } } }
测试
测试结果如下:
l 39.3094
n 0.8867
h 0.8626
j 0.8626
f 0.8589
a 0.8498
d 0.8498
m 0.8176
o 0.8176
g 0.7837
b 0.7694
c 0.7694
i 0.7518
k 0.7518
e 0.7485
p 0.7459
q 0.7459
到此这篇关于Java实现 基于密度的局部离群点检测------lof算法的文章就介绍到这了,更多相关Java实现离群点检测------lof算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!