最近在阅读一本书籍–Dive-into-DL-Pytorch(动手学深度学习),链接:https://github.com/newmonkey/Dive-into-DL-PyTorch,自身觉得受益匪浅,在此记录下自己的学习历程。
本篇主要记录关于SOFTMAX回归的知识。softmax回归和线性回归一样都属于单层神经网络;线性回归主要适用于回归问题,而softmax回归主要使用于分类问题。本文主要尝试对手写数字进行识别。sofemax函数又叫归一化指数函数。
import torch
import torchvision
import numpy as np
def load_data_fashion_mnist(batch_size, root='本地地址url'):
transform = torchvision.transforms.ToTensor()
mnist_train = torchvision.datasets.MNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.MNIST(root=root, train=False, download=True, transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False)
return train_iter,test_iter
batch_size=256
train_iter,test_iter=load_data_fashion_mnist(batch_size)
import torch.nn as nn
num_inputs = 784
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x shape: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y
net = LinearNet(num_inputs, num_outputs)
print(net)
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
loss=nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.005)
num_epochs = 10
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step() # “softmax回归的简洁实现”一节将用到
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net, train_iter, test_iter, loss, num_epochs,batch_size, None, None, optimizer)
#结果
#epoch 1, loss 0.0071, train acc 0.675, test acc 0.788
#epoch 2, loss 0.0050, train acc 0.795, test acc 0.821
#epoch 3, loss 0.0040, train acc 0.819, test acc 0.837
#epoch 4, loss 0.0034, train acc 0.832, test acc 0.846
#epoch 5, loss 0.0031, train acc 0.841, test acc 0.855
#epoch 6, loss 0.0028, train acc 0.848, test acc 0.860
#epoch 7, loss 0.0026, train acc 0.853, test acc 0.865
#epoch 8, loss 0.0025, train acc 0.857, test acc 0.868
#epoch 9, loss 0.0024, train acc 0.860, test acc 0.871
#epoch 10, loss 0.0023, train acc 0.863, test acc 0.874
from IPython import display
import matplotlib.pyplot as plt
X, y = iter(test_iter).next()
def get_fashion_mnist_labels(labels):
text_labels = ['0', '1', '2', '3', '4','5', '6', '7', '8', '9']
return [text_labels[int(i)] for i in labels]
def show_fashion_mnist(images, labels):
#use_svg_display()
display.display_svg()
# 这⾥的_表示我们忽略(不使⽤)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
true_labels = get_fashion_mnist_labels(y.numpy())
pred_labels =get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels,pred_labels)]
show_fashion_mnist(X[0:20], titles[0:20])