三郎数据结构算法学习笔记:线索二叉树

三郎数据结构算法学习笔记:线索二叉树

    • 概念
    • 应用实例
    • 说明
    • 运行结果
    • 源代码

概念

n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。
利用二叉链表中的空指针域,
存放指向该结点在某种遍历次序下的前驱和后继结点的指针
(这种附加的指针称为"线索")
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。
根据线索性质的不同,线索二叉树可分为
前序线索二叉树、中序线索二叉树和后序线索二叉树三种
一个结点的前一个结点,称为前驱结点
一个结点的后一个结点,称为后继结点

应用实例

三郎数据结构算法学习笔记:线索二叉树_第1张图片
线索化:
三郎数据结构算法学习笔记:线索二叉树_第2张图片

说明

当线索化二叉树后,Node 节点的 属性 left 和 right ,有如下情况:
left 指向的是左子树,也可能是指向的前驱节点.
比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的 就是前驱节点.
right 指向的是右子树,也可能是指向后继节点,
比如 ① 节点 right 指向的是右子树,而⑩ 节点的 right 指向 的是后继节点

运行结果

源代码

package com.atguigu.tree.threadedbinarytree;

import java.util.concurrent.SynchronousQueue;

public class ThreadedBinaryTreeDemo {

	public static void main(String[] args) {
		//测试一把中序线索二叉树的功能
		HeroNode root = new HeroNode(1, "tom");
		HeroNode node2 = new HeroNode(3, "jack");
		HeroNode node3 = new HeroNode(6, "smith");
		HeroNode node4 = new HeroNode(8, "mary");
		HeroNode node5 = new HeroNode(10, "king");
		HeroNode node6 = new HeroNode(14, "dim");
		
		//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
		root.setLeft(node2);
		root.setRight(node3);
		node2.setLeft(node4);
		node2.setRight(node5);
		node3.setLeft(node6);
		
		//测试中序线索化
		ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
		threadedBinaryTree.setRoot(root);
		threadedBinaryTree.threadedNodes();
		
		//测试: 以10号节点测试
		HeroNode leftNode = node5.getLeft();
		HeroNode rightNode = node5.getRight();
		System.out.println("10号结点的前驱结点是 ="  + leftNode); //3
		System.out.println("10号结点的后继结点是="  + rightNode); //1
		
		//当线索化二叉树后,能在使用原来的遍历方法
		//threadedBinaryTree.infixOrder();
		System.out.println("使用线索化的方式遍历 线索化二叉树");
		threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6
		
	}

}




//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
	private HeroNode root;
	
	//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
	//在递归进行线索化时,pre 总是保留前一个结点
	private HeroNode pre = null;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//重载一把threadedNodes方法
	public void threadedNodes() {
		this.threadedNodes(root);
	}
	
	//遍历线索化二叉树的方法
	public void threadedList() {
		//定义一个变量,存储当前遍历的结点,从root开始
		HeroNode node = root;
		while(node != null) {
			//循环的找到leftType == 1的结点,第一个找到就是8结点
			//后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
			//处理后的有效结点
			while(node.getLeftType() == 0) {
				node = node.getLeft();
			}
			
			//打印当前这个结点
			System.out.println(node);
			//如果当前结点的右指针指向的是后继结点,就一直输出
			while(node.getRightType() == 1) {
				//获取到当前结点的后继结点
				node = node.getRight();
				System.out.println(node);
			}
			//替换这个遍历的结点
			node = node.getRight();
			
		}
	}
	
	//编写对二叉树进行中序线索化的方法
	/**
	 * 
	 * @param node 就是当前需要线索化的结点
	 */
	public void threadedNodes(HeroNode node) {
		
		//如果node==null, 不能线索化
		if(node == null) {
			return;
		}
		
		//(一)先线索化左子树
		threadedNodes(node.getLeft());
		//(二)线索化当前结点[有难度]
		
		//处理当前结点的前驱结点
		//以8结点来理解
		//8结点的.left = null , 8结点的.leftType = 1
		if(node.getLeft() == null) {
			//让当前结点的左指针指向前驱结点 
			node.setLeft(pre); 
			//修改当前结点的左指针的类型,指向前驱结点
			node.setLeftType(1);
		}
		
		//处理后继结点
		if (pre != null && pre.getRight() == null) {
			//让前驱结点的右指针指向当前结点
			pre.setRight(node);
			//修改前驱结点的右指针类型
			pre.setRightType(1);
		}
		//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
		pre = node;
		
		//(三)在线索化右子树
		threadedNodes(node.getRight());
		
		
	}
	
	//删除结点
	public void delNode(int no) {
		if(root != null) {
			//如果只有一个root结点, 这里立即判断root是不是就是要删除结点
			if(root.getNo() == no) {
				root = null;
			} else {
				//递归删除
				root.delNode(no);
			}
		}else{
			System.out.println("空树,不能删除~");
		}
	}
	//前序遍历
	public void preOrder() {
		if(this.root != null) {
			this.root.preOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.root != null) {
			this.root.infixOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.root != null) {
			this.root.postOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//前序遍历
	public HeroNode preOrderSearch(int no) {
		if(root != null) {
			return root.preOrderSearch(no);
		} else {
			return null;
		}
	}
	//中序遍历
	public HeroNode infixOrderSearch(int no) {
		if(root != null) {
			return root.infixOrderSearch(no);
		}else {
			return null;
		}
	}
	//后序遍历
	public HeroNode postOrderSearch(int no) {
		if(root != null) {
			return this.root.postOrderSearch(no);
		}else {
			return null;
		}
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	//说明
	//1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
	//2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
	private int leftType;
	private int rightType;
	
	
	
	public int getLeftType() {
		return leftType;
	}
	public void setLeftType(int leftType) {
		this.leftType = leftType;
	}
	public int getRightType() {
		return rightType;
	}
	public void setRightType(int rightType) {
		this.rightType = rightType;
	}
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
	
	//递归删除结点
	//1.如果删除的节点是叶子节点,则删除该节点
	//2.如果删除的节点是非叶子节点,则删除该子树
	public void delNode(int no) {
		
		//思路
		/*
		 * 	1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
			2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
			3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
			4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
			5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.

		 */
		//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
		if(this.left != null && this.left.no == no) {
			this.left = null;
			return;
		}
		//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
		if(this.right != null && this.right.no == no) {
			this.right = null;
			return;
		}
		//4.我们就需要向左子树进行递归删除
		if(this.left != null) {
			this.left.delNode(no);
		}
		//5.则应当向右子树进行递归删除
		if(this.right != null) {
			this.right.delNode(no);
		}
	}
	
	//编写前序遍历的方法
	public void preOrder() {
		System.out.println(this); //先输出父结点
		//递归向左子树前序遍历
		if(this.left != null) {
			this.left.preOrder();
		}
		//递归向右子树前序遍历
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	//中序遍历
	public void infixOrder() {
		
		//递归向左子树中序遍历
		if(this.left != null) {
			this.left.infixOrder();
		}
		//输出父结点
		System.out.println(this);
		//递归向右子树中序遍历
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.left != null) {
			this.left.postOrder();
		}
		if(this.right != null) {
			this.right.postOrder();
		}
		System.out.println(this);
	}
	
	//前序遍历查找
	/**
	 * 
	 * @param no 查找no
	 * @return 如果找到就返回该Node ,如果没有找到返回 null
	 */
	public HeroNode preOrderSearch(int no) {
		System.out.println("进入前序遍历");
		//比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
		//2.如果左递归前序查找,找到结点,则返回
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.preOrderSearch(no);
		}
		if(resNode != null) {//说明我们左子树找到
			return resNode;
		}
		//1.左递归前序查找,找到结点,则返回,否继续判断,
		//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
		if(this.right != null) {
			resNode = this.right.preOrderSearch(no);
		}
		return resNode;
	}
	
	//中序遍历查找
	public HeroNode infixOrderSearch(int no) {
		//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.infixOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入中序查找");
		//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
		if(this.no == no) {
			return this;
		}
		//否则继续进行右递归的中序查找
		if(this.right != null) {
			resNode = this.right.infixOrderSearch(no);
		}
		return resNode;
		
	}
	
	//后序遍历查找
	public HeroNode postOrderSearch(int no) {
		
		//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.postOrderSearch(no);
		}
		if(resNode != null) {//说明在左子树找到
			return resNode;
		}
		
		//如果左子树没有找到,则向右子树递归进行后序遍历查找
		if(this.right != null) {
			resNode = this.right.postOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入后序查找");
		//如果左右子树都没有找到,就比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		return resNode;
	}
	
}

你可能感兴趣的:(数据结构,算法,二叉树,指针,算法,链表,数据结构)