openCV调用YOLOv5 ONNX模型

导出U版YOLOv5的ONNX模型,openCV直接读取会失败,原因在于Pytorch2ONNX不支持对slice对象赋值,需要更改下列两个地方代码:

yolov5/models/common.py

class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
        # return self.conv(self.contract(x))

更改为:


 class Focus(nn.Module):
     # Focus wh information into c-space
     def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
         super(Focus, self).__init__()
         self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
         # self.contract = Contract(gain=2)

     def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
         # return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
         N, C, H, W = x.size()  # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
         s = 2
         x = x.view(N, C, H // s, s, W // s, s)  # x(1,64,40,2,40,2)
         x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
         y = x.view(N, C * s * s, H // s, W // s)  # x(1,256,40,40)
         return self.conv(y)

具体原因可看博客2021.03.11更新 c++下使用opencv部署yolov5模型(一)_爱晚乏客游的博客-CSDN博客和Pytorch转ONNX-实战篇2(实战踩坑总结) - 知乎,这里不做过多解释

yolov5/models/yolo.py

class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export
 
    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
 
    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            x[i] = x[i].view(bs * self.na * ny * nx, self.no).contiguous()
        return torch.cat(x)
        #     if not self.training:  # inference
        #         if self.grid[i].shape[2:4] != x[i].shape[2:4]:
        #             self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
        #
        #         y = x[i].sigmoid()
        #         y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
        #         y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
        #         z.append(y.view(bs, -1, self.no))
        #
        # return x if self.training else (torch.cat(z, 1), x)

更改完成之后,使用netron查看导出的onnx模型,可发现上述操作把YOLO层的三个输出合并为一个输出,格式类似yolov4的格式。

python
import netron
netron.start("best.onnx")

openCV调用YOLOv5 ONNX模型_第1张图片openCV调用YOLOv5 ONNX模型_第2张图片

接下来就是使用openCV调用导出的onnx,本文使用的openCV版本为4.5.1,使用4.4版本的可能会出现错误。代码参考了博客2021.09.02更新说明 c++下使用opencv部署yolov5模型 (三)_爱晚乏客游的博客-CSDN博客,我也是依葫芦画瓢

yolo5.h

#pragma once
#include 
#include 
#include 
#include 
#include 
#include 
#include
using namespace cv;
using namespace dnn;
using namespace std;
struct Output {
	int id;//结果类别id
	float confidence;//结果置信度
	cv::Rect box;//矩形框
};

class YOLO
{
public:
	YOLO() {};
	bool readModel(Net &net, string &netPath, bool isCuda = false);
	bool Detect(cv::Mat &SrcImg, cv::dnn::Net &net, std::vector &output);
	void drawPred(cv::Mat &img, std::vector result, std::vector color);
private:
	//计算归一化函数
	float Sigmoid(float x) {
		return static_cast(1.f / (1.f + exp(-x)));
	}
	const float netAnchors[3][6] = { { 17.0,22.0, 23.0,32.0, 31.0,44.0 },{ 40.0,60.0, 51.0,85.0, 68.0,117.0 },{ 108.0,93.0, 94.0,168.0, 170.0,331.0 } };
	const float netStride[3] = { 8.0, 16.0, 32.0 };
	const int netWidth = 608;
	const int netHeight = 608;
	float nmsThreshold = 0.2;
	float boxThreshold = 0.5;
	float classThreshold = 0.5;
	std::vector className = { "head", "tail" };
};

yolo5.cpp

#include "yolo5.h"
#include
#include
using namespace cv;
using namespace std;
bool YOLO::readModel(Net & net, string & netPath, bool isCuda)
{
	try {
		net = readNetFromONNX(netPath);
	}
	catch (const std::exception&) {
		return false;
	}
	//cuda
	if (isCuda) {
		net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
		net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
	}
	//cpu
	else {
		net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
		net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
	}
	return true;
}

bool YOLO::Detect(cv::Mat & SrcImg, cv::dnn::Net & net, std::vector& output)
{
	Mat blob;
	blobFromImage(SrcImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), Scalar(0, 0, 0), true, false);
	net.setInput(blob);
	vector netOutputImg;
	net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
	vector classIds;//结果id数组
	vector confidences;//结果每个id对应置信度数组
	vector boxes;//每个id矩形框
	float ratio_h = (float)SrcImg.rows / netHeight;
	float ratio_w = (float)SrcImg.cols / netWidth;
	int net_width = className.size() + 5;  //输出的网络宽度是类别数+5
	float* pdata = (float*)netOutputImg[0].data;
	for (int stride = 0; stride < 3; stride++) {    //stride
		int grid_x = (int)(netWidth / netStride[stride]);
		int grid_y = (int)(netHeight / netStride[stride]);
		for (int anchor = 0; anchor < 3; anchor++) { //anchors
			const float anchor_w = netAnchors[stride][anchor * 2];
			const float anchor_h = netAnchors[stride][anchor * 2 + 1];
			for (int i = 0; i < grid_x; i++) {
				for (int j = 0; j < grid_y; j++) {
					float box_score = Sigmoid(pdata[4]);//获取每一行的box框中含有某个物体的概率
					if (box_score > boxThreshold) {
						cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
						Point classIdPoint;
						double max_class_socre;
						minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
						max_class_socre = Sigmoid((float)max_class_socre);
						if (max_class_socre > boxThreshold) {
							//rect [x,y,w,h]
							float x = (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride];  //x
							float y = (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride];   //y
							float w = powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w;   //w
							float h = powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h;  //h
							int left = (x - 0.5*w)*ratio_w;
							int top = (y - 0.5*h)*ratio_h;
							classIds.push_back(classIdPoint.x);
							confidences.push_back(max_class_socre);
							boxes.push_back(Rect(left, top, int(w*ratio_w), int(h*ratio_h)));
						}
					}
					pdata += net_width;//指针移到下一行
				}
			}
		}
	}
	vector nms_result;
	NMSBoxes(boxes, confidences, classThreshold, nmsThreshold, nms_result);
	for (int i = 0; i < nms_result.size(); i++) {
		int idx = nms_result[i];
		Output result;
		result.id = classIds[idx];
		result.confidence = confidences[idx];
		result.box = boxes[idx];
		output.push_back(result);
	}
	if (output.size())
		return true;
	else
		return false;
}

void YOLO::drawPred(Mat &img, vector result, vector color) {
	for (int i = 0; i < result.size(); i++)
	{
		int left, top;
		left = result[i].box.x;
		top = result[i].box.y;
		int color_num = i;
		rectangle(img, result[i].box, color[result[i].id], 2, 8);
		string label = className[result[i].id] + ":" + to_string(result[i].confidence);
		int baseLine;
		Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
		top = max(top, labelSize.height);
		putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 1);
	}
	cv::resize(img, img, cv::Size(1400, 800));
	imshow("test", img);
	waitKey();
}

main.cpp

#include 
#include 
#include 
#include 
#include "yolo5.h"
using namespace cv;
using namespace cv::dnn;
using namespace std;
int main()
{
	string img_path = "./test.jpg";
	string model_path = "./best.onnx";
	YOLO test;
	Net net;
	if (test.readModel(net, model_path, false)) {
		cout << "read net ok!" << endl;
	}
	else {
		return -1;
	}
	//生成随机颜色
	vector color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(Scalar(b, g, r));
	}
	vector result;
	Mat img = imread(img_path);
	if (test.Detect(img, net, result)) {
		test.drawPred(img, result, color);
	}
	else {
		cout << "Detect Failed!" << endl;
	}
	system("pause");
	return 0;
}

我做了一个夜间车辆检测,下面贴出运行结果。感觉检测结果边框有点变形,回头再看看哪出错了。模型文件可在我的博客资源里下载yolov5夜间车辆检测模型-深度学习文档类资源-CSDN文库

openCV调用YOLOv5 ONNX模型_第3张图片

你可能感兴趣的:(YOLO,opencv,pytorch,opencv,深度学习)