- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
墩墩分墩
Pythonpython自动化自动化脚本自动化测试pyautogui
文章目录1.PyAutoGUI简介2.不同操作系统引入模块3.全局延迟和临时休眠4,自动防故障功能5.获取屏幕分辨率—用于定位,这是最关键的,找到要点击的位置(像素坐标)6.获取鼠标位置7.判断坐标是否在屏幕范围内:8.鼠标移动8.1.鼠标移动的基本操作8.2.鼠标移动效果-缓动/渐变(Tween/Easing)9.鼠标点击10.鼠标滚轮控制11.鼠标拖拽12.键盘控制13.消息弹窗函数14.屏幕
- 图像效果的一些专业测试工具和指标:
追心嵌入式
C语言测试工具音视频
图像效果的一些专业测试工具和指标:1,色卡:色卡是行业通用的,也是标准的,一般相机出图后会与色卡对比,来衡量是否发生了色偏,颜色还原度,失真度的差异。2,图像测试卡,一般是来测试图像中心和四角的清晰度的。测试方法,用摄像头对着图纸,使摄像头中看到图纸占满,即可测试。3,灰阶值:是反应了该相机对图像灰阶值的解析度。4,帧率,码率,分辨率H264/5i帧间隔。这些指标可以通过potplayer去看,一
- 通过 USB 或无线方式将照片从 vivo 传输到电脑
anroid数据传输文件管理
随着时间的推移,vivo手机上的图片会很快占用大量存储空间,因此找到在更安全或更大的设备(如PC)上备份图片的方法很重要。此外,整理图片以获得更高的分辨率或从PC打印图片也可能是您需要快速传输的原因。如果您不确定如何将照片从vivo传输到PC,请不要担心!在这篇文章中,我们将汇编5种简单的照片传输解决方案,包括有线和无线选项,并介绍每种方式的优缺点。选项1:如何仅通过USB数据线将照片从vivo传
- 嵌入式音视频开发——视频篇(三)
程序猿玖月柒
音视频音视频
本笔记来源于学习韦东山团队课程,自己选择性摘抄加深记忆和学习的效果。帧率与时间戳帧率(framerate)是指视频播放中每秒显示的图像帧数。测量单位为“每秒显示帧数”(framepersecond,FPS)或“赫兹”,一般来说FPS用于描述影片、电子绘图或游戏每秒播放多少帧。人类视觉的时间敏感性和分辨率根据视觉刺激的类型和特征而变化,并且在个体之间是不同的。由于人类眼睛的特殊生理结构,如果所看画面
- 如何使用媒体查询实现响应式网页设计?
破碎的天堂鸟
学习教程媒体css前端
使用媒体查询(MediaQueries)实现响应式网页设计是现代网页开发中的一项核心技术,它允许开发者根据设备的屏幕尺寸、分辨率、方向等特性动态调整网页布局和样式,从而提供更好的用户体验。以下是详细说明如何使用媒体查询实现响应式网页设计的方法:1.媒体查询的基本概念媒体查询是CSS3引入的一项功能,通过@media规则,开发者可以根据设备的特性(如宽度、高度、方向等)应用不同的样式规则。媒体查询可
- 超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准
CVer儿
语义分割3d
摘要:磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改进受到缺乏准确标注的MRI数据集的限制。通过接受根治性前列腺切除术的患者数据,可以将切除前列腺的数字化组织病理学图像与术前MRI进行
- 理解WPF中的布局
会敲键盘的肘子
.Net实用方法总结wpf.net
一、理解WPF中的布局在WPF问世之前,Windows开发人员使用刻板的基于坐标的布局将控件放到正确位置。在WPF中,这种方式虽然可行,但已经极少使用。大多数应用程序将使用类似于Web的流(flow)布局;在使用流布局模型时,控件可以扩大,并将其他控件挤到其他位置,开发人员能创建与显示分辨率和窗口大小无关的、在不同的显示器上正确缩放的用户界面;当窗口内容发生变化时,界面可调整自身,并且可以自如地处
- 【图像复原】论文精读:Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能计算机视觉图像修复图像处理论文阅读论文笔记
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)文章目录前言Abstract1.Introduction2.RelatedWork3.Method3.1.ModelScalingUp3.2.ScalingUpTrainingData3
- 小白WEB前端学习(七)
Sun ᥫᩣ涵
WEB前端前端学习
续:小白WEB前端学习(六)继续学习CSS(五)8.响应式布局:响应式布局意在实现不同屏幕分辨率的终端上浏览网页的不同展示方式1.响应式布局介绍:优点:面对不同分辨率设备灵活性强能够快捷解决多设备显示适应问题缺点:兼容各种设备工作量大,效率低下代码累赘,会出现隐藏无用的元素,加载时间加长手机:76899212482.media媒体查询HTML标签字号手机屏幕大小不同,分辨率不同如何设置不同的htm
- 3D Gaussian Splatting 部署
学术菜鸟小晨
最新人工智能技术三维重建
简介:3DGaussianSplatting是一种用一组2d图像创建3d场景的方法,你只需要一个场景的视频或者一组照片就可以获得这个场景的高质量3d表示,使你可以从任何角度渲染它。它们是一类辐射场方法(如NeRF),但同时训练速度更快(同等质量)、渲染速度更快,并达到更好或相似的质量。3DGaussianSplatting可以实现无界且完整的场景1080p分辨率下进行高质量实时(≥100fps)视
- conv2former模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能python神经网络conda
模型背景在Conv2Former模型提出之前,视觉识别领域的研究主要集中在两个方向:传统卷积神经网络(ConvNets)新兴的视觉Transformer(ViTs)ConvNets通过堆叠基本模块和采用金字塔结构取得了显著进展,但往往忽略了全局上下文信息的显式建模。ViTs则通过自注意力机制有效捕捉全局依赖关系,在多个视觉任务中展现出优异性能。然而,ViTs在处理高分辨率图像时面临计算成本过高的问
- 汽车和工业用激光雷达行业分析
LPiling
汽车自动驾驶人工智能
行业现状激光雷达(LiDAR)作为自动驾驶和智能驾驶领域的关键技术,近年来经历了显著的技术进步和成本下降。激光雷达通过脉冲激光照射目标并用传感器测量反射脉冲返回时间来测量目标距离,能够生成高分辨率的地图和三维模型。这种技术在汽车领域的应用已经从高端车型快速渗透到中低端市场,成为自动驾驶系统不可或缺的传感器之一。在工业领域,激光雷达支持机器人、工厂自动化和物流等多种应用。随着电子商务的蓬勃发展,消费
- 腾讯 Hunyuan3D-2: 高分辨率3D 资产生成
云樱梦海
Github开源项目3dHunyuan3D-2
腾讯Hunyuan3D-2:高分辨率3D资产生成的突破前言在当今数字化时代,3D资产生成技术正变得越来越重要。无论是游戏开发、影视制作还是虚拟现实领域,高质量的3D模型和纹理都是创造沉浸式体验的关键。然而,传统的3D资产制作往往需要大量的时间和专业技能。幸运的是,腾讯的Hunyuan3D-2项目为我们带来了新的希望,它通过大规模扩散模型实现了高分辨率3D资产的高效生成。项目简介Hunyuan3D-
- DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
池央
生成对抗网络cnn深度学习
深度卷积生成对抗网络(DCGAN,DeepConvolutionalGenerativeAdversarialNetwork)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域
- 光学变焦和数字变倍的区别,看完这篇文你就明白了!!!
云卓SKYDROID
无人机云卓科技知识高科技材质变焦
一、光学变焦(OpticalZoom)原理:光学变焦通过改变镜头内部镜片组的相对位置来改变镜头的实际焦距,从而实现图像的放大或缩小。这种变焦方式在放大图像时,不会损失图像的清晰度和质量,因为图像的放大是通过物理光学原理完成的,不涉及电子处理过程。效果:当光学变焦倍数增大时,相机能够拍摄到更远的物体,并且保持图像的清晰度和细节。光学变焦在放大图像时,像素总数保持不变,因此图像的分辨率和清晰度不会下降
- 五款图片变清晰工具帮助你,轻松实现一键修复模糊图片
Ai工具分享
人工智能
在日常生活中,我们难免会遇到图片模糊的情况,无论是年代久远的老照片因分辨率不足而显得模糊,还是在拍摄瞬间因轻微手抖导致的画面不清晰,这些问题都大大影响了图片的观赏价值。那么,面对这些模糊的图片,我们该如何让它们重焕新生,变得清晰明朗呢?接下来,我们就来介绍五款出色的软件,它们具备强大的图像处理能力,能够帮助你轻松实现一键修复模糊图片,让你的珍贵记忆恢复原有的清晰与生动。一、牛学长图片修复工具牛学长
- 嵌入式硬件篇---ADC模拟-数字转换
Ronin-Lotus
嵌入式硬件篇嵌入式硬件单片机学习stm32模块测试低代码笔记
文章目录前言第一部分:STM32ADC的主要特点1.分辨率2.多通道3.转换模式4.转换速度5.触发源6.数据对齐7.温度传感器和Vrefint通道第二部分:STM32ADC的工作流程:1.配置ADC2.启动ADC转换第三部分:ADC转化1.抽样2.量化3.编码第四部分:额外小知识总结前言以上就是今天要讲的内容,本文仅仅简单介绍了STM32中ADC模拟-数字转换的实现。第一部分:STM32ADC的
- YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!
AI棒棒牛
YOLO目标检测人工智能模型改进yolov10创新sci写作
YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!所有改进代码均经过实验测试跑通!截止发稿时YOLOv10已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽er!购买相关资料后畅享一对一答疑!YOLOv10全网最新创
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- 2017-SIGGRAPH-Google,MIT-(HDRNet)Deep Bilateral Learning for Real-Time Image Enhancements
WX Chen
HDR技术深度学习神经网络机器学习
双边网格本质上是一个可以保存边缘信息的3维的数据结构。对于一张2维图片,在2维空间中增加了一维代表像素的强度slice操作(上采样)BilateralGuidedUpsampling这篇文章用双边网格实现图像的操作算子的加速。算法的核心思想是将一幅高分辨率的图像通过下采样转换成一个双边网格,在双边网格中每个格子就是一个图像的仿射变换算子,它的原理是在空间与值域相近的区域内,相似输入图像的亮度经算子
- FFmpeg 元数据
yerennuo
ffmpegffmpeg
文章目录元数据代码实例,查看元数据元数据在处理音视频文件时,了解其元数据信息是非常重要的。元数据是描述文件内容和属性的数据,包括了诸如标题、作者、时长、分辨率等信息。使用ACDictonaryAPI,可以查看元数据或者将元数据写入到AVFormatContext,AVStream,AVChapter和AVProgram结构体中,元数据保存在它们Metadata字段中。元数据是由一个键值对组成的。与
- 安卓APP如何适配不同的手机分辨率
水瓶丫头站住
Androidandroid智能手机
1android是根据什么去选择drawable文件夹下的图片?是根据drawable文件夹的修饰符进行选择的。比如drawable、drawable-ldpi、drawable-mdpi、drawable-hdpi、drawable-xhdpi、drawalbe-xxhdpi、drawable-xxxhdpi根据修饰符进行优先匹配。不同的dpi修饰符对应的dpi如下drawable-ldpi12
- SD ComfyUI工作流 平面模型房屋3D渲染
Mr数据杨
StableDiffusionAI绘画ComfyUIAI绘画
文章目录平面模型房屋3D渲染SD模型Node节点工作流程开发与应用效果展示平面模型房屋3D渲染此工作流是为将平面模型房屋图转换为3D渲染而设计,利用先进的模型和节点处理图像,增加细节和色彩,以及通过超分辨率技术增强最终图像的清晰度。流程从加载图像开始,经过一系列的处理步骤,包括图像缩放、条件编码、模型加载,最终通过高级放大技术提高图像分辨率,以达到高清的视觉效果。SD模型模型名称说明majicMI
- matlab实现一个雷达信号处理的程序,涉及到对原始图像的模拟、加权、加噪以及通过迭代算法对图像进行恢复和优化处理
max500600
MATLAB算法算法matlab信号处理
clcclearcloseallloadscene3.mat%加载原始图像,自己设计设计为一个300*400的矩阵300是距离向长度,400是方位向长度Map_ori=scene3;[M,N_K]=size(Map_ori);figureimagesc(scene3)v=100;%机载速度,单位m/sbandwidth=30*1e6;%信号带宽,决定距离分辨率,单位Hzc=3*1e8;%光速R_R
- 【WRF模拟】WRF运行时进程数限制的原因及报错解决方案
WW、forever
WRF模型原理及应用WRF
目录WRF运行时进程数限制的原因网格块的最小尺寸要求嵌套域的尺寸和分辨率进程数与网格划分的关系案例1:四层嵌套错误:ERROR:ReducetheMPIrankcount,orredistributethetasks解决方法参考WRF运行时进程数限制的原因在进行wrf模拟时,若内层网格分辨率较高,模拟时间较久,可适当增加运行内核数,但如何确定合适的内核数呢?太高会导致模型报错,太低又会增加模型运行
- MAC安装Cloudera QuickStart VM+incubator-griffin相关配置过程
youyouiyiy
virtualboxcentosclouderagriffin
1.加载镜像至VirtualBox中,处理器核数调整至最少2个,内存默认最小4096MB。2.在虚拟机配置中增加共享文件夹路径。3.我的Macbook多加了一个屏幕,第一次启动在独立屏上显示CENTOS界面,分辨率只有800*600,关闭,修改显存大小和VirtualBox的“偏好设置”,“显示”,最大屏幕尺寸为空。重启就好了。4.Cloudera已经将所有组件都装好了,我是因为卸载重装了mysq
- 20250118 PPT画的论文插图如何导出高分辨率图片:修改电脑注册表
HI_Forrest
论文写作powerpoint论文
在PowerPoint中导出高分辨率图片的步骤如下:1.调整幻灯片尺寸:打开PowerPoint,点击“设计”选项卡。在“自定义”区域选择“幻灯片大小”。选择“自定义幻灯片大小”。在弹出的对话框中,将幻灯片的尺寸设置为更大的数值(比如宽度设置为40英寸,高度设置为30英寸),这有助于提高导出图片的分辨率。2.导出为图片:完成幻灯片设计后,点击“文件”菜单。选择“导出”。选择“更改文件类型”中的“P
- 嵌入机械手高分辨率触摸功能可实现自适应类人类抓握
硅谷秋水
机器学习人工智能智能体人工智能机器人
24年12月来自北大、北京通智、北大武汉AI研究院和英国QueenMary大学的论文“Embeddinghigh-resolutiontouchacrossrobotichandsenablesadaptivehuman-likegrasping”。开发适应现实世界动态的机械手仍然是机器人技术和机器智能领域的一项基本挑战。尽管在复制人手运动学和控制算法方面取得了重大进展,但机器人系统仍然难以在动态
- emgu.cv读取1080p视频
zhangxiaomm
音视频
以前一直是用c++的opencv读取视频,最近的项目改用emgu.cv读取视频,摄像头为顺华利1080p的小探测器。这个小摄像头直接获取帧频是60,最大分辨率是1920*1080遇到的几个问题记录如下:1直接读取默认图像为640*480.读取视频采用cap=newCapture(0);可以读取计算机自带的摄像头,外置的1080p摄像头id号为1,直接采用cap=newCapture(1);读取,读
- 欧姆龙模拟量模块ad041_CJ1W-AD041-V1 欧姆龙模拟量输入单元 CJ1W-AD041-V1 - 广州凌控...
药丸君
欧姆龙模拟量模块ad041
品牌:欧姆龙产品名称:模拟量输入单元型号:CJ1W-AD041-V1输入点数:4点。信号范围选择:4点个别。信号范围:1~5V、0~5V、0~10V、-10~10V、4~20mA。分辨率:1/8000(也可设定为1/4000)。转换速度:250μs/点以下(也可设定为1ms/点)。综合精度:电压:正负0.2%电流:正负0.4%。各功能:断线检测、峰值保持、平均化处理。外部连接:可卸端子块。一致的毫
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号