bzoj 3158: 千钧一发【最小割】

这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是个奇数不能再分一个2出来;偶数和偶数一定满足2,因为gcd>=2
考虑最小割,先加上所有收益然后求割之后满足条件的最小代价
所以对于a[i]&1,连接(s,i,b[i]),否则连接(i,t,b[i]),对于不能同时选的i,j来说,连(i,j),表示要么割掉i的收益要么割掉j的收益

#include
#include
#include
#include
#include
using namespace std;
const int N=2005;
int n,a[N],b[N],h[N],cnt=1,le[N],s,t,ans;
struct qwe
{
    int ne,to,va;
}e[N*N];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v,int w)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].to=v;
    e[cnt].va=w;
    h[u]=cnt;
}
void ins(int u,int v,int w)
{
    add(u,v,w);
    add(v,u,0);
}
bool bfs()
{
    memset(le,0,sizeof(le));
    queueq;
    le[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=h[u];i;i=e[i].ne)
            if(e[i].va>0&&!le[e[i].to])
            {
                le[e[i].to]=le[u]+1;
                q.push(e[i].to);
            }
    }
    return le[t];
}
int dfs(int u,int f)
{
    if(u==t||!f)
        return f;
    int us=0;
    for(int i=h[u];i&&us0&&le[e[i].to]==le[u]+1)
        {
            int t=dfs(e[i].to,min(e[i].va,f-us));
            e[i].va-=t;
            e[i^1].va+=t;
            us+=t;
        }
    if(!us)
        le[u]=0;
    return us;
}
int dinic()
{
    int r=0;
    while(bfs())
        r+=dfs(s,1e9);
    return r;
}
int gcd(int a,int b)
{
    return !b?a:gcd(b,a%b);
}
long long clc(int a,int b)
{
    return 1ll*a*a+1ll*b*b;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
        a[i]=read();
    for(int i=1;i<=n;i++)
        b[i]=read();
    s=0,t=n+1;
    for(int i=1;i<=n;i++)
    {
        if(a[i]&1)
            ins(s,i,b[i]);//,cerr<

转载于:https://www.cnblogs.com/lokiii/p/10769751.html

你可能感兴趣的:(bzoj 3158: 千钧一发【最小割】)