介绍
在《直方图均衡化详解》中,我们已经了解的直方图均衡化的基本概念,并且可以使用 cv2.equalizeHist()
函数执行直方图均衡。
在本节中,将介绍如何应用对比度受限的自适应直方图均衡化 ( Contrast Limited Adaptive Histogram Equalization
, CLAHE
) 来均衡图像,CLAHE
是自适应直方图均衡化( Adaptive Histogram Equalization
, AHE
)的一种变体,区别在于其对比度的增大是受限的。图像相对均匀区域中的噪声被 AHE
过度放大,而 CLAHE
通过限制对比度增大来解决这个问题。该算法通过创建原始图像的多个直方图,并使用这些直方图来重新分配图像的亮度,用于提高图像的对比度。
主要代码
接下来,将 CLAHE
应用于灰度和彩色图像。应用 CLAHE
时,有两个重要参数,第一个是 clipLimit
,它设置对比度限制的阈值,默认值为 40;第二个是 tileGridSize
,它设置行和列中的 tiles
数量。应用 CLAHE
时,图像被分成称为 tiles
(默认为 8 x 8 )的小块以执行其计算。 将 CLAHE 应用于灰度图像,需要使用以下代码:
# 加载图像 image = cv2.imread('example.png') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 灰度图像应用 CLAHE clahe = cv2.createCLAHE(clipLimit=2.0) gray_image_clahe = clahe.apply(gray_image) # 使用不同 clipLimit 值 clahe.setClipLimit(5.0) gray_image_clahe_2 = clahe.apply(gray_image) clahe.setClipLimit(10.0) gray_image_clahe_3 = clahe.apply(gray_image) clahe.setClipLimit(20.0) gray_image_clahe_4 = clahe.apply(gray_image)
然后,我们将 CLAHE
应用于彩色图像,类似于彩色图像对比度均衡的方法,创建四个函数以仅在不同颜色空间的亮度通道上使用 CLAHE
来均衡化彩色图像:
def equalize_clahe_color_hsv(img): cla = cv2.createCLAHE(clipLimit=4.0) H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) eq_V = cla.apply(V) eq_image = cv2.cvtColor(cv2.merge([H, S, eq_V]), cv2.COLOR_HSV2BGR) return eq_image def equalize_clahe_color_lab(img): cla = cv2.createCLAHE(clipLimit=4.0) L, a, b = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2Lab)) eq_L = cla.apply(L) eq_image = cv2.cvtColor(cv2.merge([eq_L, a, b]), cv2.COLOR_Lab2BGR) return eq_image def equalize_clahe_color_yuv(img): cla = cv2.createCLAHE(clipLimit=4.0) Y, U, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV)) eq_Y = cla.apply(Y) eq_image = cv2.cvtColor(cv2.merge([eq_Y, U, V]), cv2.COLOR_YUV2BGR) return eq_image def equalize_clahe_color(img): cla = cv2.createCLAHE(clipLimit=4.0) channels = cv2.split(img) eq_channels = [] for ch in channels: eq_channels.append(cla.apply(ch)) eq_image = cv2.merge(eq_channels) return eq_image # 彩色图像应用 CLAHE image_clahe_color = equalize_clahe_color(image) image_clahe_color_lab = equalize_clahe_color_lab(image) image_clahe_color_hsv = equalize_clahe_color_hsv(image) image_clahe_color_yuv = equalize_clahe_color_yuv(image) # 可视化 show_img_with_matplotlib(cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR), "gray", 1) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=2.0", 2) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_2, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=5.0", 3) # 其他图像的可视化方法类似,不再赘述 # ...
将所有这些函数应用于测试图像后比较结果,如下图所示:
在上图中,我们可以看到改变 clipLimit
参数在测试图像上应用 CLAHE 后的不同效果,同时也可以看到在不同颜色空间( LAB、HSV 和 YUV )的亮度通道上应用 CLAHE
后的不同结果。其中,可以看到在 BGR
图像的三个通道上应用 CLAHE
与仅在不同颜色空间的亮度通道上使用 CLAHE
的不同效果。
比较 CLAHE 和直方图均衡化
为了更好地展示 CLAHE
的效果,接下来对比 CLAHE
和直方图均衡化 (cv2.equalizeHist()
) 在同一图像上的效果,同时可视化生成的图像和生成的直方图。
image = cv2.imread('example.png') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray_image], [0], None, [256], [0, 256]) # 直方图均衡化 gray_image_eq = cv2.equalizeHist(gray_image) # 计算直方图 hist_eq = cv2.calcHist([gray_image_eq], [0], None, [256], [0, 256]) # 创建 clahe: clahe = cv2.createCLAHE(clipLimit=4.0) # 在灰度图像上应用 clahe gray_image_clahe = clahe.apply(gray_image) # 计算直方图 hist_clahe = cv2.calcHist([gray_image_clahe], [0], None, [256], [0, 256])
可视化的结果如下图所示:
通过以上对比,可以肯定地说,在许多情况下,CLAHE
比应用直方图均衡化有更好的结果和性能。
到此这篇关于详解OpenCV自适应直方图均衡化的应用的文章就介绍到这了,更多相关OpenCV自适应直方图均衡化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!