【前端必知】Webpack性能优化

Webpack是现在主流的功能强大的模块化打包工具,在使用Webpack时,如果不注意性能优化,有非常大的可能会产生性能问题,性能问题主要分为开发时打包构建速度慢、开发调试时的重复性工作、以及输出文件质量不高等,因此性能优化也主要从这些方面来分析。

  • 优化构建速度
    • 缩小文件的搜索范围
    • 使用DllPlugin减少基础模块编译次数
    • 使用HappyPack开启多进程Loader转换
    • 使用ParallelUglifyPlugin开启多进程压缩JS文件
  • 优化开发体验
    • 使用自动刷新
      • Webpack监听文件
      • DevServer刷新浏览器
    • 开启模块热替换
  • 优化输出质量-压缩文件体积
    • 区分环境--减小生产环境代码体积
    • 压缩代码-JS、ES、CSS
      • 压缩JS:Webpack内置UglifyJS插件、ParallelUglifyPlugin
      • 压缩ES6:第三方UglifyJS插件
      • 压缩CSS:css-loader?minimize、PurifyCSSPlugin
    • 使用Tree Shaking剔除JS死代码
  • 优化输出质量--加速网络请求
    • 使用CDN加速静态资源加载
    • 多页面应用提取页面间公共代码,以利用缓存
    • 分割代码以按需加载]
  • 优化输出质量--提升代码运行时的效率
    • 使用Prepack提前求值
    • 使用Scope Hoisting
  • 使用输出分析工具
  • 其他Tips

优化构建速度

Webpack在启动后会根据Entry配置的入口出发,递归地解析所依赖的文件。这个过程分为搜索文件和把匹配的文件进行分析、转化的两个过程,因此可以从这两个角度来进行优化配置。

缩小文件的搜索范围

搜索过程优化方式包括:

  1. resolve字段告诉webpack怎么去搜索文件,所以首先要重视resolve字段的配置
  • 设置 resolve.modules:[path.resolve(__dirname, 'node_modules')]
    避免层层查找。

resolve.modules告诉webpack去哪些目录下寻找第三方模块,默认值为['node_modules'],会依次查找./node_modules、../node_modules、../../node_modules。

  • 设置 resolve.mainFields:['main'],设置尽量少的值可以减少入口文件的搜索步骤

第三方模块为了适应不同的使用环境,会定义多个入口文件,mainFields定义使用第三方模块的哪个入口文件,由于大多数第三方模块都使用main字段描述入口文件的位置,所以可以设置单独一个main值,减少搜索

  • 对庞大的第三方模块设置resolve.alias,使webpack直接使用库的min文件,避免库内解析

如对于react:

resolve.alias:{
    'react':patch.resolve(__dirname, './node_modules/react/dist/react.min.js')
}

这样会影响Tree-Shaking,适合对整体性比较强的库使用,如果是像lodash这类工具类的比较分散的库,比较适合Tree-Shaking,避免使用这种方式。

  • 合理配置resolve.extensions,减少文件查找

默认值:extensions:['.js', '.json'],

当导入语句没带文件后缀时,Webpack会根据extensions定义的后缀列表进行文件查找,所以:

a. 列表值尽量少

b. 频率高的文件类型的后缀写在前面

c. 源码中的导入语句尽可能的写上文件后缀,如require(./data)要写成require(./data.json)

  1. module.noParse字段告诉Webpack不必解析哪些文件,可以用来排除对非模块化库文件的解析
    如jQuery、ChartJS,另外如果使用resolve.alias配置了react.min.js,则也应该排除解析,因为react.min.js经过构建,已经是可以直接运行在浏览器的、非模块化的文件了。

noParse值可以是RegExp、[RegExp]、function

module:{ noParse:[/jquery|chartjs/, /react\.min\.js$/] }
  1. 配置loader时,通过test、exclude、include缩小搜索范围

使用DllPlugin减少基础模块编译次数

DllPlugin动态链接库插件,其原理是把网页依赖的基础模块抽离出来打包到dll文件中,当需要导入的模块存在于某个dll中时,这个模块不再被打包,而是去dll中获取。为什么会提升构建速度呢?原因在于dll中大多包含的是常用的第三方模块,如react、react-dom,所以只要这些模块版本不升级,就只需被编译一次。我认为这样做和配置resolve.alias和module.noParse的效果有异曲同工的效果。

使用方法:

使用DllPlugin配置一个webpack_dll.config.js来构建dll文件:

// webpack_dll.config.js
const path = require('path');
const DllPlugin = require('webpack/lib/DllPlugin');
module.exports = {
 entry:{
     react:['react','react-dom'],
     polyfill:['core-js/fn/promise','whatwg-fetch']
 },
 output:{
     filename:'[name].dll.js',
     path:path.resolve(__dirname, 'dist'),
     library:'_dll_[name]',  //dll的全局变量名
 },
 plugins:[
     new DllPlugin({
         name:'_dll_[name]',  //dll的全局变量名
         path:path.join(__dirname,'dist','[name].manifest.json'),//描述生成的manifest文件
     })
 ]
}

需要注意DllPlugin的参数中name值必须和output.library值保持一致,并且生成的manifest文件中会引用output.library值。

最终构建出的文件:

 |-- polyfill.dll.js
 |-- polyfill.manifest.json
 |-- react.dll.js
 └── react.manifest.json

其中xx.dll.js包含打包的n多模块,这些模块存在一个数组里,并以数组索引作为ID,通过一个变量假设为_xx_dll暴露在全局中,可以通过window._xx_dll访问这些模块。xx.manifest.json文件描述dll文件包含哪些模块、每个模块的路径和ID。然后再在项目的主config文件里使用DllReferencePlugin插件引入xx.manifest.json文件。

在主config文件里使用DllReferencePlugin插件引入xx.manifest.json文件:

//webpack.config.json
const path = require('path');
const DllReferencePlugin = require('webpack/lib/DllReferencePlugin');
module.exports = {
    entry:{ main:'./main.js' },
    //... 省略output、loader等的配置
    plugins:[
        new DllReferencePlugin({
            manifest:require('./dist/react.manifest.json')
        }),
        new DllReferenctPlugin({
            manifest:require('./dist/polyfill.manifest.json')
        })
    ]
}

最终构建生成main.js

使用HappyPack开启多进程Loader转换

在整个构建流程中,最耗时的就是Loader对文件的转换操作了,而运行在Node.js之上的Webpack是单线程模型的,也就是只能一个一个文件进行处理,不能并行处理。HappyPack可以将任务分解给多个子进程,最后将结果发给主进程。JS是单线程模型,只能通过这种多进程的方式提高性能。

HappyPack使用如下:

npm i -D happypack
// webpack.config.json
const path = require('path');
const HappyPack = require('happypack');

module.exports = {
    //...
    module:{
        rules:[{
                test:/\.js$/,
                use:['happypack/loader?id=babel']
                exclude:path.resolve(__dirname, 'node_modules')
            },{
                test:/\.css/,
                use:['happypack/loader?id=css']
            }],
        plugins:[
            new HappyPack({
                id:'babel',
                loaders:['babel-loader?cacheDirectory']
            }),
            new HappyPack({
                id:'css',
                loaders:['css-loader']
            })
        ]
    }
}

除了id和loaders,HappyPack还支持这三个参数:threads、verbose、threadpool,threadpool代表共享进程池,即多个HappyPack实例都用同个进程池中的子进程处理任务,以防资源占用过多。

使用ParallelUglifyPlugin开启多进程压缩JS文件

使用UglifyJS插件压缩JS代码时,需要先将代码解析成Object表示的AST(抽象语法树),再去应用各种规则去分析和处理AST,所以这个过程计算量大耗时较多。ParallelUglifyPlugin可以开启多个子进程,每个子进程使用UglifyJS压缩代码,可以并行执行,能显著缩短压缩时间。

使用也很简单,把原来的UglifyJS插件换成本插件即可,使用如下:

npm i -D webpack-parallel-uglify-plugin

// webpack.config.json
const ParallelUglifyPlugin = require('wbepack-parallel-uglify-plugin');
//...
plugins: [
    new ParallelUglifyPlugin({
        uglifyJS:{
            //...这里放uglifyJS的参数
        },
        //...其他ParallelUglifyPlugin的参数,设置cacheDir可以开启缓存,加快构建速度
    })
]

优化开发体验

开发过程中修改源码后,需要自动构建和刷新浏览器,以查看效果。这个过程可以使用Webpack实现自动化,Webpack负责监听文件的变化,DevServer负责刷新浏览器。

使用自动刷新

Webpack监听文件

Webpack可以使用两种方式开启监听:

  1. 启动webpack时加上--watch参数;
  2. 在配置文件中设置watch:true。此外还有如下配置参数。合理设置watchOptions可以优化监听体验。
module.exports = {
    watch: true,
    watchOptions: {
        ignored: /node_modules/,
        aggregateTimeout: 300,  //文件变动后多久发起构建,越大越好
        poll: 1000,  //每秒询问次数,越小越好
    }
}

ignored:设置不监听的目录,排除node_modules后可以显著减少Webpack消耗的内存

aggregateTimeout:文件变动后多久发起构建,避免文件更新太快而造成的频繁编译以至卡死,越大越好

poll:通过向系统轮询文件是否变化来判断文件是否改变,poll为每秒询问次数,越小越好

DevServer刷新浏览器

DevServer刷新浏览器有两种方式:

  • 向网页中注入代理客户端代码,通过客户端发起刷新
  • 向网页装入一个iframe,通过刷新iframe实现刷新效果

默认情况下,以及 devserver: {inline:true} 都是采用第一种方式刷新页面。第一种方式DevServer因为不知道网页依赖哪些Chunk,所以会向每个chunk中都注入客户端代码,当要输出很多chunk时,会导致构建变慢。而一个页面只需要一个客户端,所以关闭inline模式可以减少构建时间,chunk越多提升越明显。关闭方式:

  • 启动时使用webpack-dev-server --inline false
  • 配置 devserver:{inline:false}

关闭inline后入口网址变为http://localhost:8080/webpack-dev-server/

另外devServer.compress参数可配置是否采用Gzip压缩,默认为false

开启模块热替换HMR

模块热替换不刷新整个网页而只重新编译发生变化的模块,并用新模块替换老模块,所以预览反应更快,等待时间更少,同时不刷新页面能保留当前网页的运行状态。原理也是向每一个chunk中注入代理客户端来连接DevServer和网页。开启方式:

  • webpack-dev-server --hot
  • 使用HotModuleReplacementPlugin,比较麻烦

开启后如果修改子模块就可以实现局部刷新,但如果修改的是根JS文件,会整页刷新,原因在于,子模块更新时,事件一层层向上传递,直到某层的文件接收了当前变化的模块,然后执行回调函数。如果一层层向外抛直到最外层都没有文件接收,就会刷新整页。

使用 NamedModulesPlugin 可以使控制台打印出被替换的模块的名称而非数字ID,另外同webpack监听,忽略node_modules目录的文件可以提升性能。

优化输出质量-压缩文件体积

区分环境--减小生产环境代码体积

代码运行环境分为开发环境和生产环境,代码需要根据不同环境做不同的操作,许多第三方库中也有大量的根据开发环境判断的if else代码,构建也需要根据不同环境输出不同的代码,所以需要一套机制可以在源码中区分环境,区分环境之后可以使输出的生产环境的代码体积减小。Webpack中使用DefinePlugin插件来定义配置文件适用的环境。

const DefinePlugin = require('webpack/lib/DefinePlugin');
//...
plugins:[
    new DefinePlugin({
        'process.env': {
            NODE_ENV: JSON.stringify('production')
        }
    })
]

注意,JSON.stringify('production') 的原因是,环境变量值需要一个双引号包裹的字符串,而stringify后的值是'"production"'

然后就可以在源码中使用定义的环境:

if(process.env.NODE_ENV === 'production'){
    console.log('你在生产环境')
    doSth();
}else{
    console.log('你在开发环境')
    doSthElse();
}

当代码中使用了process时,Webpack会自动打包进process模块的代码以支持非Node.js的运行环境,这个模块的作用是模拟Node.js中的process,以支持process.env.NODE_ENV === 'production' 语句。

压缩代码-JS、ES、CSS

压缩JS:Webpack内置UglifyJS插件、ParallelUglifyPlugin

会分析JS代码语法树,理解代码的含义,从而做到去掉无效代码、去掉日志输入代码、缩短变量名等优化。常用配置参数如下:

const UglifyJSPlugin = require('webpack/lib/optimize/UglifyJsPlugin');
//...
plugins: [
    new UglifyJSPlugin({
        compress: {
            warnings: false,  //删除无用代码时不输出警告
            drop_console: true,  //删除所有console语句,可以兼容IE
            collapse_vars: true,  //内嵌已定义但只使用一次的变量
            reduce_vars: true,  //提取使用多次但没定义的静态值到变量
        },
        output: {
            beautify: false, //最紧凑的输出,不保留空格和制表符
            comments: false, //删除所有注释
        }
    })
]

使用webpack --optimize-minimize 启动webpack,可以注入默认配置的UglifyJSPlugin

压缩ES6:第三方UglifyJS插件

随着越来越多的浏览器支持直接执行ES6代码,应尽可能的运行原生ES6,这样比起转换后的ES5代码,代码量更少,且ES6代码性能更好。直接运行ES6代码时,也需要代码压缩,第三方的uglify-webpack-plugin提供了压缩ES6代码的功能:

npm i -D uglify-webpack-plugin@beta //要使用最新版本的插件
//webpack.config.json
const UglifyESPlugin = require('uglify-webpack-plugin');
//...
plugins:[
    new UglifyESPlugin({
        uglifyOptions: {  //比UglifyJS多嵌套一层
            compress: {
                warnings: false,
                drop_console: true,
                collapse_vars: true,
                reduce_vars: true
            },
            output: {
                beautify: false,
                comments: false
            }
        }
    })
]

另外要防止babel-loader转换ES6代码,要在.babelrc中去掉babel-preset-env,因为正是babel-preset-env负责把ES6转换为ES5。

压缩CSS:css-loader?minimize、PurifyCSSPlugin

cssnano基于PostCSS,不仅是删掉空格,还能理解代码含义,例如把color:#ff0000 转换成 color:red,css-loader内置了cssnano,只需要使用 css-loader?minimize 就可以开启cssnano压缩。

另外一种压缩CSS的方式是使用PurifyCSSPlugin,需要配合 extract-text-webpack-plugin 使用,它主要的作用是可以去除没有用到的CSS代码,类似JS的Tree Shaking。

使用Tree Shaking剔除JS死代码

Tree Shaking可以剔除用不上的死代码,它依赖ES6的import、export的模块化语法,最先在Rollup中出现,Webpack 2.0将其引入。适合用于Lodash、utils.js等工具类较分散的文件。它正常工作的前提是代码必须采用ES6的模块化语法,因为ES6模块化语法是静态的(在导入、导出语句中的路径必须是静态字符串,且不能放入其他代码块中)。如果采用了ES5中的模块化,例如module.export = {...}、require( x+y )、if (x) { require( './util' ) },则Webpack无法分析出可以剔除哪些代码。

启用Tree Shaking:

  • 修改.babelrc以保留ES6模块化语句:
{
    "presets": [
        [
            "env", 
            { "module": false },   //关闭Babel的模块转换功能,保留ES6模块化语法
        ]
    ]
}
  • 启动webpack时带上 --display-used-exports可以在shell打印出关于代码剔除的提示

  • 使用UglifyJSPlugin,或者启动时使用--optimize-minimize

  • 在使用第三方库时,需要配置 resolve.mainFields: ['jsnext:main', 'main'] 以指明解析第三方库代码时,采用ES6模块化的代码入口

优化输出质量--加速网络请求

使用CDN加速静态资源加载

CND加速的原理

CDN通过将资源部署到世界各地,使得用户可以就近访问资源,加快访问速度。要接入CDN,需要把网页的静态资源上传到CDN服务上,在访问这些资源时,使用CDN服务提供的URL。

由于CDN会为资源开启长时间的缓存,例如用户从CDN上获取了index.html,即使之后替换了CDN上的index.html,用户那边仍会在使用之前的版本直到缓存时间过期。业界做法:

HTML文件:放在自己的服务器上且关闭缓存,不接入CDN
静态的JS、CSS、图片等资源:开启CDN和缓存,同时文件名带上由内容计算出的Hash值,这样只要内容变化hash就会变化,文件名就会变化,就会被重新下载而不论缓存时间多长。

另外,HTTP1.x版本的协议下,浏览器会对于向同一域名并行发起的请求数限制在4~8个。那么把所有静态资源放在同一域名下的CDN服务上就会遇到这种限制,所以可以把他们分散放在不同的CDN服务上,例如JS文件放在js.cdn.com下,将CSS文件放在css.cdn.com下等。这样又会带来一个新的问题:增加了域名解析时间,这个可以通过dns-prefetch来解决 来缩减域名解析的时间。形如//xx.com 这样的URL省略了协议,这样做的好处是,浏览器在访问资源时会自动根据当前URL采用的模式来决定使用HTTP还是HTTPS协议。

总之,构建需要满足以下几点:

  • 静态资源导入的URL要变成指向CDN服务的绝对路径的URL
  • 静态资源的文件名需要带上根据内容计算出的Hash值
  • 不同类型资源放在不同域名的CDN上
    最终配置:
const ExtractTextPlugin = require('extract-text-webpack-plugin');
const {WebPlugin} = require('web-webpack-plugin');
//...
output:{
 filename: '[name]_[chunkhash:8].js',
 path: path.resolve(__dirname, 'dist'),
 publicPatch: '//js.cdn.com/id/', //指定存放JS文件的CDN地址
},
module:{
 rules:[{
     test: /\.css/,
     use: ExtractTextPlugin.extract({
         use: ['css-loader?minimize'],
         publicPatch: '//img.cdn.com/id/', //指定css文件中导入的图片等资源存放的cdn地址
     }),
 },{
    test: /\.png/,
    use: ['file-loader?name=[name]_[hash:8].[ext]'], //为输出的PNG文件名加上Hash值 
 }]
},
plugins:[
  new WebPlugin({
     template: './template.html',
     filename: 'index.html',
     stylePublicPath: '//css.cdn.com/id/', //指定存放CSS文件的CDN地址
  }),
 new ExtractTextPlugin({
     filename:`[name]_[contenthash:8].css`, //为输出的CSS文件加上Hash
 })
]

多页面应用提取页面间公共代码,以利用缓存

原理
大型网站通常由多个页面组成,每个页面都是一个独立的单页应用,多个页面间肯定会依赖同样的样式文件、技术栈等。如果不把这些公共文件提取出来,那么每个单页打包出来的chunk中都会包含公共代码,相当于要传输n份重复代码。如果把公共文件提取出一个文件,那么当用户访问了一个网页,加载了这个公共文件,再访问其他依赖公共文件的网页时,就直接使用文件在浏览器的缓存,这样公共文件就只用被传输一次。

应用方法

  1. 把多个页面依赖的公共代码提取到common.js中,此时common.js包含基础库的代码
const CommonsChunkPlugin = require('webpack/lib/optimize/CommonsChunkPlugin');
//...
plugins:[
    new CommonsChunkPlugin({
        chunks:['a','b'], //从哪些chunk中提取
        name:'common',  // 提取出的公共部分形成一个新的chunk
    })
]
  1. 找出依赖的基础库,写一个base.js文件,再与common.js提取公共代码到base中,common.js就剔除了基础库代码,而base.js保持不变
//base.js
import 'react';
import 'react-dom';
import './base.css';
//webpack.config.json
entry:{
    base: './base.js'
},
plugins:[
    new CommonsChunkPlugin({
        chunks:['base','common'],
        name:'base',
        //minChunks:2,表示文件要被提取出来需要在指定的chunks中出现的最小次数,防止common.js中没有代码的情况
    })        
]
  1. 得到基础库代码base.js,不含基础库的公共代码common.js,和页面各自的代码文件xx.js。
    页面引用顺序如下:base.js--> common.js--> xx.js

分割代码以按需加载

原理

单页应用的一个问题在于使用一个页面承载复杂的功能,要加载的文件体积很大,不进行优化的话会导致首屏加载时间过长,影响用户体验。做按需加载可以解决这个问题。具体方法如下:

  1. 将网站功能按照相关程度划分成几类
  2. 每一类合并成一个Chunk,按需加载对应的Chunk
  3. 例如,只把首屏相关的功能放入执行入口所在的Chunk,这样首次加载少量的代码,其他代码要用到的时候再去加载。最好提前预估用户接下来的操作,提前加载对应代码,让用户感知不到网络加载

做法

一个最简单的例子:网页首次只加载main.js,网页展示一个按钮,点击按钮时加载分割出去的show.js,加载成功后执行show.js里的函数

//main.js
document.getElementById('btn').addEventListener('click',function(){
    import(/* webpackChunkName:"show" */ './show').then((show)=>{
        show('Webpack');
    })
})

//show.js
module.exports = function (content) {
    window.alert('Hello ' + content);
}

import(/* webpackChunkName:show / './show').then()
是实现按需加载的关键,Webpack内置对import() 语句的支持,Webpack会以./show.js为入口重新生成一个Chunk。代码在浏览器上运行时只有点击了按钮才会开始加载show.js,且import语句会返回一个Promise,加载成功后可以在then方法中获取加载的内容。这要求浏览器支持Promise API,
对于不支持的浏览器,需要注入Promise polyfill*。

/*webpackChunkName:show */ 是定义动态生成的Chunk的名称,默认名称是[id].js,定义名称方便调试代码。为了正确输出这个配置的ChunkName,还需要配置Webpack:

//...
output:{
    filename:'[name].js',
    chunkFilename:'[name].js', //指定动态生成的Chunk在输出时的文件名称
}

书中另外提供了更复杂的React-Router中异步加载组件的实战场景。

优化输出质量--提升代码运行时的效率

使用Prepack提前求值

原理
Prepack是一个部分求值器,编译代码时提前将计算结果放到编译后的代码中,而不是在代码运行时才去求值。通过在便一阶段预先执行源码来得到执行结果,再直接将运行结果输出以提升性能。但是现在Prepack还不够成熟,用于线上环境还为时过早。

使用方法

const PrepackWebpackPlugin = require('prepack-webpack-plugin').default;
module.exports = {
    plugins:[
        new PrepackWebpackPlugin()
    ]
}

使用Scope Hoisting

原理
译作“作用域提升”,是在Webpack3中推出的功能,它分析模块间的依赖关系,尽可能将被打散的模块合并到一个函数中,但不能造成代码冗余,所以只有被引用一次的模块才能被合并。由于需要分析模块间的依赖关系,所以源码必须是采用了ES6模块化的,否则Webpack会降级处理不采用Scope Hoisting。

使用方法

const ModuleConcatenationPlugin = require('webpack/lib/optimize/ModuleConcatenationPlugin');
//...
plugins:[
    new ModuleConcatenationPlugin();
],
resolve:{
    mainFields:['jsnext:main','browser','main']
}

webpack --display-optimization-bailout 输出日志中会提示哪个文件导致了降级处理

使用输出分析工具

启动Webpack时带上这两个参数可以生成一个json文件,输出分析工具大多依赖该文件进行分析:

webpack --profile --json > stats.json 其中 --profile 记录构建过程中的耗时信息,--json 以JSON的格式输出构建结果,>stats.json 是UNIX / Linux系统中的管道命令,含义是将内容通过管道输出到stats.json文件中。

  • 官方工具Webpack Analyse

打开该工具的官网http://webpack.github.io/anal...,就可以得到分析结果

  • webpack-bundle-analyzer

可视化分析工具,比Webapck Analyse更直观。使用也很简单:

1.npm i -g webpack-bundle-analyzer安装到全局

2.按照上面方法生成stats.json文件

3.在项目根目录执行webpack-bundle-analyzer,浏览器会自动打开结果分析页面。

其他Tips

  • 配置babel-loader时,use: [‘babel-loader?cacheDirectory’] cacheDirectory用于缓存babel的编译结果,加快重新编译的速度。另外注意排除node_modules文件夹,因为文件都使用了ES5的语法,没必要再使用Babel转换。
  • 配置externals,排除因为已使用script标签引入而不用打包的代码,noParse是排除没使用模块化语句的代码。
  • 配置performance参数可以输出文件的性能检查配置。
  • 配置profile:true,是否捕捉Webpack构建的性能信息,用于分析是什么原因导致构建性能不佳。
  • 配置cache:true,是否启用缓存来提升构建速度。
  • 可以使用url-loader把小图片转换成base64嵌入到JS或CSS中,减少加载次数。
  • 通过imagemin-webpack-plugin压缩图片,通过webpack-spritesmith制作雪碧图。
  • 开发环境下将devtool设置为cheap-module-eval-source-map,因为生成这种source map的速度最快,能加速构建。在生产环境下将devtool设置为hidden-source-map

你可能感兴趣的:(【前端必知】Webpack性能优化)