大数据学习笔记(一):Hadoop

1、Hadoop是什么

Hadoop是一个由Apache基金会所开发的分布式系统基础架构,也是一个开源的大数据框架,通俗点说,是一个分布式计算的解决方案。 用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop允许使用简单的编程模型在跨计算机集群的分布式环境中存储和处理大数据。它的设计是从单个服务器扩展到数千个机器,每个都提供本地计算和存储。可以这样理解:它是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式。

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop的框架最核心的设计就是:Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoop的数据来源可以是任何形式,在处理半结构化和非结构化数据上与关系型数据库相比有更好的性能,具有更灵活的处理能力,不管任何数据形式最终会转化为key/value,key/value是基本数据单元。用函数式变成Mapreduce代替SQL,SQL是查询语句,而Mapreduce则是使用脚本和代码,而对于适用于关系型数据库,习惯SQL的Hadoop有开源工具hive代替。

2、Hadoop架构

大数据学习笔记(一):Hadoop_第1张图片

 

  • HDFS: 分布式文件存储

  • YARN: 分布式资源管理

  • MapReduce: 分布式计算

  • Others: 利用YARN的资源管理功能实现其他的数据处理方式

内部各个节点基本都是采用Master-Woker架构下面是Master-Worker设计模式介绍

1、Master-Worker模式是常用的并行设计模式。核心思想是,系统由两个角色组成,Master和Worker,Master负责接收和分配任务,Worker负责处理子任务。任务处理过程中,Master还负责监督任务进展和Worker的健康状态;Master将接收Client提交的任务,并将任务的进展汇总反馈给Client(各角色关系如下图)。Master-Worker模式满足于可以将大任务划分为小任务的场景,是一种分而治之的设计理念。通过多线程或者多进程多机器的模式,可以将小任务处理分发给更多的CPU处理,降低单个CPU的计算量,通过并发/并行提高任务的完成速度,提高系统的性能。

这里写图片描述

具体细节如下图,Master对任务进行切分,并放入任务队列;然后,触发Worker处理任务。实际操作中,任务的分配有多种形式,如Master主动拉起Workder进程池或线程池,并将任务分配给Worker;或者由Worker主动领取任务,这样的Worker一般是常驻进程;还有一种解耦的方式,即Master做任务的接收、切分和结果统计,指定Worker的数量和性能指标,但不参与Worker的实际管理,而是交由第三方调度监控和调度Worker。

这里写图片描述

3、Hadoop中的基本模块

Hadoop Common: 包括Hadoop常用的工具类,由原来的Hadoop core部分更名而来。主要包括系统配置工具Configuration、远程过程调用RPC、序列化机制和Hadoop抽象文件系统FileSystem等。它们为在通用硬件上搭建云计算环境提供基本的服务,并为运行在该平台上的软件开发提供了所需的API。

Hadoop Distributed File System : 分布式文件系统,提供对应用程序数据的高吞吐量,高伸缩性,高容错性的访问。是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。

Hadoop YARN: 任务调度和集群资源管理。

Hadoop MapReduce: 基于YARN的大型数据集并行处理系统。是一种计算模型,用以进行大数据量的计算。Hadoop的MapReduce实现,和Common、HDFS一起,构成了Hadoop发展初期的三个组件。MapReduce将应用划分为Map和Reduce两个步骤,其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。

4、一句话介绍Hadoop家族产品

以下内容来自这个链接:
http://blog.fens.me/hadoop-family-roadmap/

[Apache Hadoop]:是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。

[Apache Hive]:是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

[Apache Pig]:是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。

[Apache HBase]:是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

[Apache Sqoop]:是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

[Apache Zookeeper]:是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务

[Apache Mahout]:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。

[Apache Cassandra]:是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身

[Apache Avro]:是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。Avro是新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制

[Apache Ambari]:是一种基于Web的工具,支持Hadoop集群的供应、管理和监控。

[Apache Chukwa]:是一个开源的用于监控大型分布式系统的数据收集系统,它可以将各种各样类型的数据收集成适合 Hadoop 处理的文件保存在 HDFS 中供 Hadoop 进行各种 MapReduce 操作。

[Apache Hama]:是一个基于HDFS的BSP(Bulk Synchronous Parallel)并行计算框架, Hama可用于包括图、矩阵和网络算法在内的大规模、大数据计算。

[Apache Flume]:是一个分布的、可靠的、高可用的海量日志聚合的系统,可用于日志数据收集,日志数据处理,日志数据传输。

[Apache Giraph]:是一个可伸缩的分布式迭代图处理系统, 基于Hadoop平台,灵感来自 BSP (bulk synchronous parallel) 和 Google 的 Pregel。

[Apache Oozie]:是一个工作流引擎服务器, 用于管理和协调运行在Hadoop平台上(HDFS、Pig和MapReduce)的任务。

[Apache Crunch]:是基于Google的FlumeJava库编写的Java库,用于创建MapReduce程序。与Hive,Pig类似,Crunch提供了用于实现如连接数据、执行聚合和排序记录等常见任务的模式库

[Apache Whirr]:是一套运行于云服务的类库(包括Hadoop),可提供高度的互补性。Whirr学支持Amazon EC2和Rackspace的服务。

[Apache Bigtop]:是一个对Hadoop及其周边生态进行打包,分发和测试的工具。

[Apache HCatalog]:是基于Hadoop的数据表和存储管理,实现中央的元数据和模式管理,跨越Hadoop和RDBMS,利用Pig和Hive提供关系视图。

[Cloudera Hue]:是一个基于WEB的监控和管理系统,实现对HDFS,MapReduce/YARN, HBase, Hive, Pig的web化操作和管理。

 

 

你可能感兴趣的:(大数据,大数据,headoop,分布式)