代码量很大。。。
second.pytorch --------
|---images
|---second ----|---apex
|---torchplus |---builder
|---configs
|---core
|---data
|---framework
|---kittiviewer
|---protos
|---pytorch ------|---builder
|---spconv |---core
|---utils |---models
|---utils
上述的代码主要工程树,简单说下每个文件夹下面的代码功能:
car.fhd.config
model: {
second: {
network_class_name: "VoxelNet"
# 体素生成
voxel_generator {
point_cloud_range : [0, -40, -3, 70.4, 40, 1] # 点云范围
# point_cloud_range : [0, -32.0, -3, 52.8, 32.0, 1]
voxel_size : [0.05, 0.05, 0.1] # 体素大小
max_number_of_points_per_voxel : 5 # 每个体素的最大点数
}
# 体素特征提取器
voxel_feature_extractor: {
module_class_name: "SimpleVoxel"
num_filters: [16]
with_distance: false
num_input_features: 4
}
# 中间特征提取器
middle_feature_extractor: {
module_class_name: "SpMiddleFHD"
# num_filters_down1: [] # protobuf don't support empty list.
# num_filters_down2: []
downsample_factor: 8
num_input_features: 4
}
# RPN网络
rpn: {
module_class_name: "RPNV2"
layer_nums: [5]
layer_strides: [1]
num_filters: [128]
upsample_strides: [1]
num_upsample_filters: [128]
use_groupnorm: false
num_groups: 32
num_input_features: 128
}
# 损失函数
loss: {
classification_loss: {
weighted_sigmoid_focal: {
alpha: 0.25
gamma: 2.0
anchorwise_output: true
}
}
localization_loss: {
weighted_smooth_l1: {
sigma: 3.0
code_weight: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
}
classification_weight: 1.0
localization_weight: 2.0
}
num_point_features: 4 # model's num point feature should be independent of dataset
# Outputs
use_sigmoid_score: true
encode_background_as_zeros: true
encode_rad_error_by_sin: true
sin_error_factor: 1.0
use_direction_classifier: true # this can help for orientation benchmark
direction_loss_weight: 0.2 # enough.
num_direction_bins: 2
direction_limit_offset: 1
# Loss
pos_class_weight: 1.0
neg_class_weight: 1.0
loss_norm_type: NormByNumPositives
# Postprocess
post_center_limit_range: [0, -40, -2.2, 70.4, 40, 0.8]
nms_class_agnostic: false # only valid in multi-class nms
box_coder: {
ground_box3d_coder: {
linear_dim: false
encode_angle_vector: false
}
}
target_assigner: {
class_settings: {
anchor_generator_range: {
sizes: [1.6, 3.9, 1.56] # wlh
anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.6
unmatched_threshold : 0.45
class_name: "Car"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3 # 0.4 in submit, but 0.3 can get better hard performance
nms_iou_threshold: 0.01
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
# anchor_generators: {
# anchor_generator_stride: {
# sizes: [1.6, 3.9, 1.56] # wlh
# strides: [0.4, 0.4, 0.0] # if generate only 1 z_center, z_stride will be ignored
# offsets: [0.2, -39.8, -1.00] # origin_offset + strides / 2
# rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
# matched_threshold : 0.6
# unmatched_threshold : 0.45
# }
# }
sample_positive_fraction : -1
sample_size : 512
assign_per_class: true
}
}
}
#训练输入读取器,原batch_size=8,num_workers=3
train_input_reader: {
dataset: {
dataset_class_name: "KittiDataset"
# kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_train.pkl"
# kitti_root_path: "/media/yy/960evo/datasets/kitti"
kitti_info_path: "/home/cv/文档/datasets/KITTI_PP/kitti_infos_train.pkl"
kitti_root_path: "/home/cv/文档/datasets/KITTI_PP"
}
batch_size: 8
preprocess: {
max_number_of_voxels: 17000
shuffle_points: true
num_workers: 1
groundtruth_localization_noise_std: [1.0, 1.0, 0.5]
# groundtruth_rotation_uniform_noise: [-0.3141592654, 0.3141592654]
# groundtruth_rotation_uniform_noise: [-1.57, 1.57]
groundtruth_rotation_uniform_noise: [-0.78539816, 0.78539816]
global_rotation_uniform_noise: [-0.78539816, 0.78539816]
global_scaling_uniform_noise: [0.95, 1.05]
global_random_rotation_range_per_object: [0, 0] # pi/4 ~ 3pi/4
global_translate_noise_std: [0, 0, 0]
anchor_area_threshold: -1
remove_points_after_sample: true
groundtruth_points_drop_percentage: 0.0
groundtruth_drop_max_keep_points: 15
remove_unknown_examples: false
sample_importance: 1.0
random_flip_x: false
random_flip_y: true
remove_environment: false
#数据库采样器
database_sampler {
# database_info_path: "/media/yy/960evo/datasets/kitti/kitti_dbinfos_train.pkl"
database_info_path: "/home/cv/文档/datasets/KITTI_PP/kitti_dbinfos_train.pkl"
sample_groups {
name_to_max_num {
key: "Car"
value: 15
}
}
database_prep_steps {
filter_by_min_num_points {
min_num_point_pairs {
key: "Car"
value: 5
}
}
}
database_prep_steps {
filter_by_difficulty {
removed_difficulties: [-1]
}
}
global_random_rotation_range_per_object: [0, 0]
rate: 1.0
}
}
}
train_config: {
optimizer: {
adam_optimizer: {
learning_rate: {
one_cycle: {
lr_max: 2.25e-3
moms: [0.95, 0.85]
div_factor: 10.0
pct_start: 0.4
}
}
weight_decay: 0.01
}
fixed_weight_decay: true
use_moving_average: false
}
# steps: 99040 # 1238 * 120
# steps: 49520 # 619 * 80
# steps: 30950 # 619 * 80
# steps_per_eval: 3095 # 619 * 5
steps: 23200 # 464 * 50
steps_per_eval: 2320 # 619 * 5
save_checkpoints_secs : 1800 # half hour
save_summary_steps : 10
enable_mixed_precision: false
loss_scale_factor: -1
clear_metrics_every_epoch: true
}
#测试输入读取器,原batch_size=8,num_workers=3
eval_input_reader: {
dataset: {
dataset_class_name: "KittiDataset"
# kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_val.pkl"
# # kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_test.pkl"
# kitti_root_path: "/media/yy/960evo/datasets/kitti"
kitti_info_path: "/home/cv/文档/datasets/KITTI_PP/kitti_infos_val.pkl"
# kitti_info_path: "/home/cv/文档/datasets/KITTI_PP/kitti_infos_test.pkl"
kitti_root_path: "/home/cv/文档/datasets/KITTI_PP"
}
batch_size: 8
preprocess: {
max_number_of_voxels: 40000
shuffle_points: false
num_workers: 3
anchor_area_threshold: -1
remove_environment: false
}
}