依赖倒转原则(Dependence Inversion Principle)是指:
请编程完成Person 接收消息的功能。
public class DependecyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//完成Person接收消息的功能
//方式1分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法
//3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖
// 因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则
class Person {
public void receive(Email email ) {
System.out.println(email.getInfo());
}
}
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
public String getInfo();
}
class Email implements IReceiver {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式2
class Person {
//这里我们是对接口的依赖
public void receive(IReceiver receiver ) {//接受新类,下面方法不用修改
System.out.println(receiver.getInfo());
}
}
接口传递
通俗易懂:
B类实现了一个接口
B类可以作为接口传入
C类有一个函数里面参数是接口
interface A{
public void hello();
}
class B implements A{
public void hello(){
System.out.println("hello");
}
}
class C {
public void dependent(A a ){//对接口依赖
a.hello;
}
}
此时,
①可以创建两个对象B b = new B();和C c = new C();
②b对象可以作为接口传入到c中:c.dependent(b)或者c.dependent(new B())
构造方法传递
通俗易懂:
A是一个接口
B类实现一个接口
C类的构造函数是接口,当然也可以A点什么调用A类的函数
interface A{
public void hello();
}
class B implements A{
public void hello(){
System.out.println("hello");
}
}
class C {
public A a;
public C(A a ){//
this a =a;
}
//其他函数
public void hi(){
this.a.hello();
}
}
此时
①可以创建两个对象B b = new B();
b对象可以作为构造函数传入到c中C c = new C(b);
②实现功能直接调用:c.hi()
setter 方式传递
通俗易懂:
同理:和上面有点类似,不过是通过setter注入依赖
只是通俗易懂的结束,其实每个c类也可以实现一个接口,A虽然是接口可以换成其他抽象类
public class DependencyPass {
public static void main(String[] args) {
// TODO Auto-generated method stub
ChangHong changHong = new ChangHong();
//通过接口传递实现依赖
// OpenAndClose openAndClose = new OpenAndClose();
// openAndClose.open(changHong);
//通过构造器进行依赖传递
// OpenAndClose openAndClose = new OpenAndClose(changHong);
// openAndClose.open();
//通过setter方法进行依赖传递
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.setTv(changHong);
openAndClose.open();
}
}
// 方式1: 通过接口传递实现依赖
// 开关的接口
// interface IOpenAndClose {
// public void open(ITV tv); //抽象方法,接收接口
// }
//
// interface ITV { //ITV接口
// public void play();
// }
//
实现接口
// class OpenAndClose implements IOpenAndClose{
// public void open(ITV tv){
// tv.play();
// }
// }
// 方式2: 通过构造方法依赖传递
// interface IOpenAndClose {
// public void open(); //抽象方法
// }
// interface ITV { //ITV接口
// public void play();
// }
// class OpenAndClose implements IOpenAndClose{
// public ITV tv; //成员
// public OpenAndClose(ITV tv){ //构造器
// this.tv = tv;
// }
// public void open(){
// this.tv.play();
// }
// }
// 方式3 , 通过setter方法传递
interface IOpenAndClose {
public void open(); // 抽象方法
public void setTv(ITV tv);
}
interface ITV { // ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose {
private ITV tv;
public void setTv(ITV tv) {
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
一个程序员不小心在子类重写父类的功能。
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
System.out.println("1-8=" + b.func1(1, 8));// 1-8
System.out.println("11+3+9=" + b.func2(11, 3));
}
}
// A类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
//因为B类不再继承A类,因此调用者,不会再func1是求减法
//调用完成的功能就会很明确
System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
System.out.println("1+8=" + b.func1(1, 8));// 1+8
System.out.println("11+3+9=" + b.func2(11, 3));
//使用组合仍然可以使用到A类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
}
}
//创建一个更加基础的基类
class Base {
//把更加基础的方法和成员写到Base类
}
// A类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
//如果B需要使用A类的方法,使用组合关系
private A a = new A();
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
//我们仍然想使用A的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}
依赖倒转原则:细节应该依赖抽象,使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成
里氏替换原则:①所有引用基类的地方必须能透明地使用其子类的对象。
②在子类中尽量不要重写父类的方法
③在适当的情况下,可以通过聚合,组合,依赖来解决问题
理解依赖查找的含义、依赖注入的含义、以及其三种形式的注入分别是什么?
a依赖b,但a不控制b的创建和销毁,仅使用b,那么b的控制权交给a之外处理,这叫控制反转(IOC)
1.依赖查找:
依赖查找(Dependency Lookup,简称 DL),它是控制反转设计原则的一种实现方式。
它的大体思路是:容器中的受控对象通过容器的 API 来查找自己所依赖的资源和协作对象。这种方式虽然降低了对象间的依赖,但是同时也使用到了容器的 API,造成了我们无法在容器外使用和测试对象。依赖查找是一种更加传统的 IOC 实现方式。
2.依赖注入:
构造函数方法注入:不用创建直接使用public C(A a ){//this a =a;}
Setter方法注入
与接口注入。public void dependent(A a )