- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 轻量级的注意力网络(LANMSFF)模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能神经网络python计算机视觉
定义与特点在深度学习领域,轻量化网络设计已成为一个重要的研究方向。LANMSFF模型作为一种新型的轻量级网络架构,在保持高性能的同时,显著降低了模型的复杂度。LANMSFF模型的核心特点可以概括为以下几个方面:轻量级设计:通过精心设计的网络结构和参数优化,在保持较高性能的同时,显著降低了模型的复杂度。注意力机制:引入了一种新的注意力机制,能够有效地捕捉图像中的关键特征,提高模型的表达能力。多尺度特
- 三种方式实现人车流统计(yolov5+opencv+deepsort+bytetrack+iou)
Jayson God
人工智能c++yolov5opencv算法人工智能
一、运行环境1、项目运行环境如下2、CPU配置3、GPU配置如果没有GPUyolov5目标检测时间会比较久二、编程语言与使用库版本项目编程语言使用c++,使用的第三方库,onnxruntime-linux-x64-1.12.1,opencv-4.6.0opencv官方地址Releases-OpenCVopencvgithub地址https://github.com/opencv/opencv/tr
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- spiking neural network概念学习
Zaгathustra
科研工作深度学习神经网络机器学习
我们认为,SNNs最大的优势在于其能够充分利用基于时空事件的信息。今天,我们有相当成熟的神经形态传感器,来记录环境实时的动态改变。这些动态感官数据可以与SNNs的时间处理能力相结合,以实现超低能耗的计算。在此类传感器中使用SNNs主要受限于缺乏适当的训练算法,从而可以有效地利用尖峰神经元的时间信息。实际上就精度而言,在大多数学习任务中SNNs的效果仍落后于第二代的深度学习。很明显,尖峰神经元可以实
- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- YOLOv11 火焰识别:智能时代的火灾预警新利器
星际编程喵
Python探索之旅YOLOpython目标检测机器学习人工智能开发语言
前言随着人工智能(AI)在各个领域如火如荼发展,图像识别技术也跟着飞速进步。从最初的传统算法到如今的深度学习模型,图像识别在准确性和效率上提升令人惊叹。而在这场技术革命中,YOLO(YouOnlyLookOnce)系列模型无疑扮演举足轻重的角色。今天,我们将目光聚焦在最新的版本——YOLOv11。别误会,YOLOv11可不是什么随便升级。它远不止数字上多了个“1”那么简单。YOLOv11集成许多先
- 【AI中的数学-人工智能的数学基石】AI的心脏:探索人工智能的算法与核心技术
云博士的AI课堂
AI中的数学人工智能算法数学AI数学大模型
第一章人工智能的数学基石第二节AI的心脏:探索人工智能的算法与核心技术人工智能(AI)的迅猛发展离不开其背后的复杂算法与核心技术。这些算法不仅决定了AI系统的性能和能力,也构成了AI应用的基础。从基础的机器学习算法到先进的深度学习模型,AI的算法生态系统丰富多样,涵盖了广泛的数学原理和计算方法。本节将深入探讨驱动AI进步的关键算法与技术,揭示其工作机制及在实际应用中的重要性。一、机器学习:智能的基
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- 使用 pip 和 conda 的安装深度学习环境
ZhengXinTang
#深度学习环境pipcondapython
在决定使用pip和conda安装包时,了解这两个包管理器之间的主要区别非常重要。以下是细分:1.在使用conda安装的过程中,可以先参考另外一台机器中对应虚拟环境配置成功的,所设置的镜像源,使用condacofig--show,进行查看,2.设置,将网络下载时,连接时间加长condaconfig--setremote_connect_timeout_secs60condaconfig--setre
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 一文带你了解人工智能:现状、应用、变革及未来展望
空青726
人工智能chatgptai大数据机器学习深度学习创业创新
近年来,人工智能(AI)的发展势头迅猛,它已经渗透到了我们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,从智能家居到医疗诊断,AI正在改变着我们的生活方式。本文将结合时事,为大家介绍当前人工智能的发展形势、在生活中的应用、人工智能的变革以及未来的发展方向。一、人工智能的发展形势1.深度学习:深度学习是当前AI领域的热门话题。通过模拟人脑神经元之间的相互作用,深度学习算法能够从大量数据中提取出
- 学习AI大模型用这十种方法,轻松入门
大模型玩家
学习人工智能transformer深度学习langchainagi大模型
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研读经典的机器学习和深度学习教材,包括但不限于《统计学
- 人工智能之数学基础:线性空间
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习线性代数线性空间神经网络
本文重点本文我们将讲解线性空间的知识,它不仅是数学中非常重要的知识点,它在机器学习和深度学习中的价值也是非常重要的,在机器学习和深度学习中是可以通过线性空间来进行解释的。线性空间的直观理解线性空间可以看作是一个多维的“宇宙”,其中的“点”由向量表示,而“运动”则通过向量的加法和数乘来实现。这个宇宙中的每一个向量都可以看作是从原点出发到该点的一条有向线段,而线性空间的维度则决定了这个宇宙的大小和复杂
- 动手学深度学习V2.0(Pytorch)——25. 使用块的网络 VGG
吨吨不打野
动手学深度学习pytorch深度学习pytorch网络
文章目录P1讲解1.1基本介绍1.2总结P2代码实现2.1报错解决2.2windows下专用/共享GPU内存P3Q&AP4.其他4.1ImageNetClassificationLeaderboard4.2VGG其它讲解P1讲解1.1基本介绍视频地址:https://www.bilibili.com/video/BV1Ao4y117Pd教材文档:https://zh-v2.d2l.ai/chapt
- AI驱动的知识发现:程序员的新机遇
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI驱动的知识发现:程序员的新机遇关键词:知识发现,AI驱动,数据挖掘,数据分析,算法优化,数据可视化,机器学习1.背景介绍1.1问题由来在当今信息化时代,数据量呈爆炸性增长,各行各业都面临着海量数据挖掘和知识发现的巨大挑战。传统的统计分析方法已难以满足需求,而人工智能(AI)技术的兴起为这一问题提供了新的解决方案。AI驱动的知识发现,即利用机器学习、深度学习等技术手段,从海量数据中自动提取有用信
- 机器学习入门-读书摘要
不像程序员的程序媛
机器学习人工智能
先看了《深度学习入门:基于python的理论和实践》这本电子书,早上因为入迷还坐过站了。。因为里面的反向传播和链式法则特别难懂,又网上搜了相关内容进行进一步理解,参考的以下文章(个人认为都讲的都非常好):https://zhuanlan.zhihu.com/p/65472471https://zhuanlan.zhihu.com/p/635438713https://zhuanlan.zhihu.
- python模块triton安装教程
2401_85863780
1024程序员节tritonwhl
Triton是一个用于高性能计算的开源库,特别适用于深度学习和科学计算。通过预编译的whl文件安装Triton可以简化安装过程,尤其是在编译时可能会遇到依赖问题的情况下。以下是详细的安装步骤:安装前准备:Python环境:确保已经安装了Python,并且Python版本与whl文件兼容。pip:确保已经安装了pip,这是Python的包管理器,用来安装外部库。下载whl文件:从可靠的来源下载适用于
- 【机器学习】逻辑回归(LogisticRegression)原理与实战
GentleCP
机器学习(深度学习)逻辑回归logisticregression原理与实战机器学习
文章目录前言一、什么是逻辑回归1.1逻辑回归基础概念1.2逻辑回归核心概念二、逻辑回归Demo2.1数据准备2.2创建逻辑回归分类器2.3分类器预测三、逻辑回归实战3.1数据准备3.2数据划分与模型创建3.3预测数据评估模型四、参数选择五、总结六、参考资料本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录前言本文主要通过文字和代码样例讲述逻辑回归的原理(包含逻辑回归的基础概念与推导)和实
- 《深度Q网络优化:突破高维连续状态空间的束缚》
人工智能深度学习
在人工智能的发展历程中,深度Q网络(DQN)作为强化学习与深度学习融合的关键成果,为解决复杂决策问题开辟了新路径。但当面对高维连续状态空间时,DQN会出现训练不稳定、收敛速度慢等问题,严重限制了其应用范围。如何优化DQN以适应高维连续状态空间,成为当下研究的热点。深度Q网络基础回顾深度Q网络结合了深度学习强大的特征提取能力与Q学习的决策优化思想。在传统强化学习中,Q学习通过Q表记录每个状态-动作对
- 智享AI直播三代系统,开启「机器人比人更会带货」时代!
缘分开始t621238
人工智能机器人
智享AI直播三代系统,开启「机器人比人更会带货」时代!在当今数字化浪潮汹涌的时代,直播行业作为电商领域的重要驱动力,正经历着前所未有的变革。近日,智享AI直播三代系统的横空出世,宛如一颗重磅炸弹,在直播行业掀起了惊涛骇浪,正式开启了「机器人比人更会带货」的全新时代。一、技术革新,颠覆传统直播模式智享AI直播三代系统的诞生,标志着直播行业进入了智能化的新纪元。它融合了先进的人工智能技术,包括深度学习
- 自学黑客(网络安全),一般人我劝你还是算了吧
网安周星星
web安全安全windows网络网络安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包文章讲述了自学网络安全时常见的误区,如先学编程、过度追求深度学习以及收集过多资料,并提供了前期学习的硬件、软件选择建议,强调了基础编程知识和英文能力的重要性。文中给出了详细的学习路线,包括基础操作入门、实战操作以及参加CTF和HVV等竞赛来提升技能,并推荐了一系列相关书籍和学习资源。一、自学网络安全学习的误区和陷阱1.不要试图先成为一
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- 【Python深入浅出㊸】解锁Python3中的TensorFlow:开启深度学习之旅
奔跑吧邓邓子
Python深入浅出python深度学习tensorflow
目录一、TensorFlow简介1.1定义与背景1.2特点二、Python3与TensorFlow的关系2.1版本对应2.2为何选择Python3三、安装TensorFlow3.1安装步骤3.2验证安装四、TensorFlow基本概念与使用方法4.1计算图(Graph)4.2会话(Session)4.3张量(Tensor)4.4变量(Variable)4.5占位符(Placeholder)五、Te
- 【Java】已解决:java.util.concurrent.ExecutionException
屿小夏
java开发语言android
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">