Matlab基于多策略改进哈里斯鹰优化算法(MHHO)

一、哈里斯鹰算法

Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第1张图片Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第2张图片

Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第3张图片Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第4张图片

二、基于多策略改进哈里斯鹰优化算法

为解决基本哈里斯鹰算法(Harris hawks optimization, HHO)易陷入局部最优和收敛精度低的问题,提出多策略优化的哈里斯鹰优化算法(Multi-Strategy Harris hawks optimization, MHHO).在探索阶段,引入柯西分布函数变异全局位置,增加种群多样性;在过渡阶段,利用随机收缩指数函数非线性化能量方程,更好地协调全局探索和局部开采;在开采阶段,引入自适应权重因子更新局部位置,提高局部开采能力.通过求解多个单峰、多峰和高维度测试函数,结果表明融合三种策略的MHHO算法具有更好的寻优精度和稳定性.

三、部分代码

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm_kernel(TrainingData, TestingData, Elm_Type, Regularization_coefficient, Kernel_type, Kernel_para)

% Usage: elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
% OR:    [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction)
%
% Input:
% TrainingData_File           - Filename of training data set

tic;
Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P');
TY=(Omega_test' * OutputWeight)';                            %   TY: the actual output of the testing data
TestingTime=toc

%%%%%%%%%% Calculate training & testing classification accuracy

if Elm_Type == REGRESSION
%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case
    TrainingAccuracy=sqrt(mse(T - Y))
    TestingAccuracy=sqrt(mse(TV.T - TY))           
end

if Elm_Type == CLASSIFIER
%%%%%%%%%% Calculate training & testing classification accuracy
    MissClassificationRate_Training=0;
    MissClassificationRate_Testing=0;

    for i = 1 : size(T, 2)
        [x, label_index_expected]=max(T(:,i));
        [x, label_index_actual]=max(Y(:,i));
        if label_index_actual~=label_index_expected
            MissClassificationRate_Training=MissClassificationRate_Training+1;
        end
    end
    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)  
    for i = 1 : size(TV.T, 2)
        [x, label_index_expected]=max(TV.T(:,i));
        [x, label_index_actual]=max(TY(:,i));
        if label_index_actual~=label_index_expected
            MissClassificationRate_Testing=MissClassificationRate_Testing+1;
        end
    end
    TestingAccuracy=(1-MissClassificationRate_Testing/size(TV.T,2))*100
end


%%%%%%%%%%%%%%%%%% Kernel Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

nb_data = size(Xtrain,1);


if strcmp(kernel_type,'RBF_kernel'),
    if nargin<4,
        XXh = sum(Xtrain.^2,2)*ones(1,nb_data);
        omega = XXh+XXh'-2*(Xtrain*Xtrain');
        omega = exp(-omega./kernel_pars(1));
    else
        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));
        XXh2 = sum(Xt.^2,2)*ones(1,nb_data);
        omega = XXh1+XXh2' - 2*Xtrain*Xt';
        omega = exp(-omega./kernel_pars(1));
    end

elseif strcmp(kernel_type,'lin_kernel')
    if nargin<4,
        omega = Xtrain*Xtrain';
    else
        omega = Xtrain*Xt';
    end

elseif strcmp(kernel_type,'poly_kernel')
    if nargin<4,
        omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);
    else
        omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);
    end

elseif strcmp(kernel_type,'wav_kernel')
    if nargin<4,
        XXh = sum(Xtrain.^2,2)*ones(1,nb_data);
        omega = XXh+XXh'-2*(Xtrain*Xtrain');

        XXh1 = sum(Xtrain,2)*ones(1,nb_data);
        omega1 = XXh1-XXh1';
        omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

    else
        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));
        XXh2 = sum(Xt.^2,2)*ones(1,nb_data);
        omega = XXh1+XXh2' - 2*(Xtrain*Xt');

        XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));
        XXh22 = sum(Xt,2)*ones(1,nb_data);
        omega1 = XXh11-XXh22';

        omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));
    end
end

Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第5张图片

四、仿真结果

Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第6张图片Matlab基于多策略改进哈里斯鹰优化算法(MHHO)_第7张图片

参考文献:[1]郭雨鑫,刘升,高文欣,张磊.多策略改进哈里斯鹰优化算法[J].微电子学与计算机,2021,38(07):18-24.

​ -

你可能感兴趣的:(算法,深度学习,python,机器学习,人工智能)