题意:
n个操作,在200000*200000的平面上加删点
find 严格在坐标右上角,x最小,再y最小的点
线段树做,区间为离散化后的 X轴坐标 ,维护区间点数 和 最小的 y 值 ( 维护最小y值是重要优化 )
#include <stdio.h> #include <string.h> #include <queue> #include <set> #include <functional> #include <map> #define N 201000 #define L(x) (x<<1) #define R(x) (x<<1|1) #define Mid(x,y) ((x+y)>>1) #define ll int using namespace std; inline ll Max(ll a, ll b){ return a>b?a:b;} inline ll Min(ll a, ll b){ return a<b?a:b;} int Point[N]; map<int, int> mymap; vector<int>G; struct node{ int l,r; int num; int maxy; }tree[N*4]; set<int> treeset[N]; set<int> ::iterator p; void build( int l, int r, int id){ tree[id].l = l, tree[id].r = r; tree[id].num = 0; tree[id].maxy = 0; if(l==r)return ; int mid = Mid(l, r); build(l, mid, L(id)); build(mid+1, r, R(id)); } void insert(int pos, int id, int data, bool add){// add = true 插入data =false 删除data if(tree[id].l == tree[id].r){ if(add) treeset[pos].insert(data); else treeset[pos].erase(data); tree[id].num = treeset[pos].size(); if(tree[id].num) tree[id].maxy = *treeset[pos].rbegin(); else tree[id].maxy = 0; return ; } int mid = Mid(tree[id].l, tree[id].r); if(pos <= mid)insert(pos, L(id), data, add); else insert(pos, R(id), data, add); tree[id].num = tree[L(id)].num + tree[R(id)].num; tree[id].maxy =Max( tree[L(id)].maxy , tree[R(id)].maxy); } int query(int l, int r, int y, int id){ if( tree[id].l == tree[id].r ){ if(tree[id].num){ p = treeset[ tree[id].l ].upper_bound(y); if(p != treeset[ tree[id].l ].end() ){ printf("%d ", Point[ tree[id].l ]); return *p; } } return -1; } if( l == tree[id].l && tree[id].r == r){ if(tree[id].num == 0 || tree[id].maxy <= y) return -1; } int mid = Mid(tree[id].l , tree[id].r); if(r <= mid) return query(l, r, y, L(id)); if(mid < l) return query(l, r, y, R(id)); int treey =query(l, mid, y, L(id)); if(treey > y) return treey; return query(mid+1, r, y, R(id)); } struct QUE{ char c; int u,v; }que[N]; set<int> tempset; void Input(int n){ int u,v; char s[10]; tempset.clear(); mymap.clear(); for(int i = 1; i <= n; i++){ scanf("%s %d %d", s, &u, &v); que[i].c = s[0], que[i].u = u, que[i].v = v; tempset.insert(u); } p = tempset.begin(); int size = tempset.size(); for(int i = 1; i <= size ; i++,p++){ mymap.insert(pair<int, int>(*p, i)); Point[i] = *p; } } int go(int x){ return mymap.find(x) -> second; } int main(){ int n; char s[10]; while(~scanf("%d",&n)){ for(int i = 1; i<=200001; i++)treeset[i].clear(); build(1,200001,1); Input(n); for(int i = 1; i<=n; i++){ int u = que[i].u, v = que[i].v; if(que[i].c == 'a') insert(go(u),1,v,1); else if(que[i].c == 'r') insert(go(u),1,v,0); else if(que[i].c == 'f') printf("%d\n", query(go(u)+1, 200001, v, 1)); } } return 0; } /* 7 add 1 1 add 3 4 find 0 0 remove 1 1 find 0 0 add 1 1 find 0 0 ans: 1 1 3 4 1 1 13 add 5 5 add 5 6 add 5 7 add 6 5 add 6 6 add 6 7 add 7 5 add 7 6 add 7 7 find 6 6 remove 7 7 find 6 6 find 4 4 ans: 7 7 -1 5 5 10 add 5 7 add 2 1 add 8 8 add 5 10 add 2 5 find 7 5 find 8 3 find 2 2 find 5 4 find 2 6 ans: 8 8 -1 5 7 8 8 5 7 */