package com.uniclick.dapa.dstest; import java.io.IOException; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { String inputFilePath = "/user/zhouyuanlong/wordcount/input/wordTest*.txt"; String outputFilePath = "/user/zhouyuanlong/wordcount/output/"; String queue = "default"; String jobName = "wordCount"; if(args == null || args.length < 2){ System.out.println("[-INPUT <inputFilePath>" + "[-OUTPUT <outputFilePath>"); }else{ for(int i=0;i<args.length;i++){ if("-Q".equals(args[i])){ queue = args[++i]; } } } Configuration conf = new Configuration(); conf.set("mapred.job.queue.name", queue); Job job = new Job(conf, jobName); job.setJarByClass(WordCount.class); job.setMapperClass(WordCountMapper.class); // job.setCombinerClass(cls); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(inputFilePath)); Path path = new Path(outputFilePath); FileSystem fs = FileSystem.get(URI.create(outputFilePath), conf); if(fs.exists(path)){ // fs.delete(path); fs.delete(path, true); } FileOutputFormat.setOutputPath(job, new Path(outputFilePath)); System.exit(job.waitForCompletion(true) ? 1 : 0); } public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ private Text kt = new Text(); private final static IntWritable vt = new IntWritable(1); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] arr = value.toString().split("\t"); for(int i = 0; i < arr.length; i++){ kt.set(arr[i]); context.write(kt, vt); } } } public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable vt = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException{ int sum = 0; for(IntWritable intVal : values){ sum += intVal.get(); } vt.set(sum); context.write(key, vt); } } }
input目录中文件wordTest1.txt的内容(每行以table键分隔):
hello world
hello hadoop
hello mapredruce
input目录中文件wordTest2.txt的内容(每行以table键分隔):
hello world
hello hadoop
hello mapredruce
hdfs输出结果:
web 2
mapredruce 1
python 1
hadoop 1
hello 6
clojure 2
world 1
java 2
PS:对Hadoop自带的wordcount的例子略有改变