本篇文章,将基于pytorch平台实现对MNIST数据集的分类分析,并分别以分类“的准确度”和“混淆矩阵”为衡量指标,分析模型的精度。
注意:
根目录’E:\深度学习’,在这里根据自己实际情况建立;
运行程序时将自动下载数据集,数据集将下载至先前建立的根目录中,用于训练模型及测试。
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.datasets as dsets
import torchvision.transforms as transforms
batch_size = 100
# MNIST dataset
train_dataset = dsets.MNIST(root='E:\深度学习', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dsets.MNIST(root='E:\深度学习', train=False, transform=transforms.ToTensor(), download=True)
# load_data
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# original_data
print("train_data:", train_dataset.train_data.size())
print("train_labels:", train_dataset.train_labels.size())
print("test_data:", test_dataset.test_data.size())
print("test_labels:", test_dataset.test_labels.size())
# shuffle batch_size data
print("batch_size:", train_loader.batch_size)
print("load_train_data:", train_loader.dataset.train_data.shape)
print("load_train_labels:", train_loader.dataset.train_labels.shape)
input_size = 784
hidden_size = 500
num_classes = 10
# #定义神经网络模型
#一般把网络中具有可学习参数的层(如全连接层、卷积层等)放在构造函数__init__()中
class Neural_net(nn.Module):
#最重要__init__初始化方法,便于一些参数的传递
def __init__(self, input_num, hidden_size, output_num):
super(Neural_net, self).__init__()#调用父类构造函数,以继承父类一些属性
self.layers1 = nn.Linear(input_num, hidden_size)
self.layers2 = nn.Linear(hidden_size, output_num)
# 最重要的forward方法,便于进行前向传播
def forward(self, x):
out = self.layers1(x)
out = torch.relu(out)
out = self.layers2(out)
return out
net = Neural_net(input_size, hidden_size, num_classes)
print(net)
# training
learning_rate = 1e-1
num_epoches = 5
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
for epoch in range(num_epoches):
print("current epoch = {}".format(epoch))
for i, (images,labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
outputs = net(images)
loss = criterion(outputs, labels) # calculate loss
optimizer.zero_grad() # clear net state before backward
loss.backward()
optimizer.step() # update parameters
if i%100 == 0:
print("current loss = %.5f" %loss.item())
# prediction
total = 0
correct = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
outputs = net(images)
_,predicts = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicts == labels).sum()
from sklearn.metrics import confusion_matrix
C2 = confusion_matrix(predicts, labels, labels=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
import sklearn
acc = sklearn.metrics.accuracy_score(labels, predicts)
print("混淆矩阵",C2)
print("混淆矩阵中的准确率为", acc)
print("Accuracy = %.2f" %(100*correct/total))
import torch
import torch.utils.data as Data
from torchvision import datasets,transforms
import torchvision
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5,],std=[0.5,])])
data_train=datasets.MNIST(root="D:\jupyter_data", transform=transform, train=True,
download=True
)
data_test=datasets.MNIST(root="D:\jupyter_data", transform=transform, train=False)
batch = 256
train_iter = Data.DataLoader(dataset=data_train, batch_size=batch, shuffle=True)
test_iter = Data.DataLoader(data_test,batch, shuffle=True)
print(train_iter)
#定义和初始化模型
for X,y in train_iter:
print(X.shape)
print(X.view(X.shape[0],-1).shape)
break
num_inputs = 784
num_outputs = 10
class LinearNet(torch.nn.Module):
def __init__(self,num_inputs,num_outputs):
super(LinearNet,self).__init__()
self.linear = torch.nn.Linear(num_inputs,num_outputs)
def forword(self,X): #这里X是28行28列.
y=self.linear(X.view(X.shape[0],-1))
return y #参数中的-1就代表这个位置由其他位置的数字来推断,根据上面得到的shape,一批是256个,所以这里的shape[0]是256
net = LinearNet(num_inputs, num_outputs)
torch.nn.init.normal_(net.linear.weight, mean=0, std=0.01)
torch.nn.init.constant_(net.linear.bias, val=0)
print(net)
for X,y in train_iter:
y_pre = net.forword(X)
print(y_pre.shape)
print(y_pre.view(y_pre.shape[0],-1).shape)
break
#定义损失函数
loss = torch.nn.CrossEntropyLoss()
#定义优化算法
optimizer = torch.optim.SGD(net.linear.parameters(),lr=0.1)
#训练模型
epoch_size = 3
def softmax_train(train_iter, test_iter, epoch_size, loss, optimizer, net, batchsize):
for epoch in range(0, epoch_size+1):
train_acc_count = 0
train_loss = 0
n = 0
for X,y in train_iter:
y_pre = net.forword(X)
l = loss(y_pre, y).sum() #注意要加起来,这个是softmax+交叉熵的,之前的线性回归不用
optimizer.zero_grad() #梯度清零
l.backward()
optimizer.step()
#准确率
train_acc_count += (y_pre.argmax(dim=1) == y).sum().item()
train_loss += l.item() #
n += y.shape[0]
print('epoch %d,loss %.4f, train acc %.3f'% (epoch + 1, train_loss/n ,train_acc_count/n))
softmax_train(train_iter, test_iter, epoch_size, loss, optimizer, net, batch)
def test_acc(test_iter, net):
test_acc_count = 0
n = 0
for X,y in test_iter:
y_pre = net.forword(X)
test_acc_count += (y_pre.argmax(dim=1) == y).sum().item()
n += y.shape[0]
#y = y.detach().numpy()
#y_pre = y_pre.detach().numpy()
from sklearn.metrics import confusion_matrix
C2 = confusion_matrix(y_pre.argmax(dim=1), y, labels=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
import sklearn
acc = sklearn.metrics.accuracy_score(y, y_pre.argmax(dim=1) )
print("混淆矩阵", C2)
print("混淆矩阵中的准确率为", acc)
print('test acc %.3f'% (test_acc_count/n))
test_acc(test_iter, net)
以上是基于pytorch平台实现对MNIST数据集的分类分析(前馈神经网络、softmax)的“基础版”,升级版在下一篇博客基于pytorch平台实现对MNIST数据集的分类分析(前馈神经网络、softmax)升级版