1.数据准备
2.内外连接优化
2.1 外连接优化
2.2 内连接优化
3.子查询优化
4.ORDER BY排序优化
5.GROUP BY分组优化
6.LIMIT分页查询优化
7.优先考虑覆盖索引
8.其它查询优化策略
8.1 EXISTS和IN的区分
8.2 COUNT(*)与COUNT(具体字段)效率
8.3 关于SELECT(*)
8.4 LIMIT 1 对优化的影响
8.5 多使用COMMIT
准备两张表:type、book,每张表中各添加20条数据。
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);
#向分类表中添加20条记录
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
- 保证被驱动表的JOIN字段已经创建了索引
- 需要JOIN 的字段,数据类型保持绝对一致。
- LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
- INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。
- 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
- 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。
- 衍生表建不了索引
#确保两张表中只有主键相关的索引
SHOW INDEX FROM book;
SHOW INDEX FROM `type`;
#写一个简单的左外连接,此时必然两张表都是ALL级别,因为不存在card字段的索引
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
#为book表的card字段建索引
CREATE INDEX Y ON book(card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
#再为type表的card字段建索引
CREATE INDEX X ON `type`(card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
#此时将book表中作用于card字段的索引删除
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
#删除两张表中多余的索引,只剩主键索引
DROP INDEX Y ON book;
DROP INDEX X ON type;
SHOW INDEX FROM book;
SHOW INDEX FROM `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;
CREATE INDEX Y ON book(card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;
CREATE INDEX X ON `type`(card);
#结论:对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;
#删除索引
DROP INDEX Y ON book;
#结论:对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表出现。
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;
#向type表中添加数据(20条数据)
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
#结论:对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。“小表驱动大表”
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;
MySQL 从 4.1 版本开始支持子查询,使用子查询可以进行 SELECT 语句的嵌套查询,即一个 SELECT 查询的结果作为另一个SELECT 语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的 SQL 操作 。子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子 查询的执行效率不高。 原因:① 执行子查询时, MySQL 需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会受到一定的影响。③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。在 MySQL 中,可以使用连接( JOIN )查询来替代子查询。 连接查询 不需要建立临时表 ,其 速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。结论:尽量不要使用 NOT IN 或者 NOT EXISTS ,用 LEFT JOIN xxx ON xx WHERE xx IS NULL 替代
数据准备:需要用到class表,建表相关参考:https://blog.csdn.net/weixin_43823808/article/details/124172443
#创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);
#查询班长的信息
EXPLAIN
SELECT *
FROM student stu1
WHERE stu1.`stuno` IN (
SELECT monitor
FROM class c
WHERE monitor IS NOT NULL
);
上面的这条子查询sql就可以优化为 连接查询:
EXPLAIN
SELECT stu1.*
FROM student stu1
JOIN class c
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` IS NOT NULL;
#查询不为班长的学生信息
EXPLAIN
SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (
SELECT monitor
FROM class b
WHERE monitor IS NOT NULL
);
通过下面的优化(连接查询),type级别从index提升到了 ref。
EXPLAIN
SELECT SQL_NO_CACHE a.*
FROM student a
LEFT OUTER JOIN class b
ON a.stuno = b.monitor
WHERE b.monitor IS NULL;
问题: 在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?优化建议:1. SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描 ,在 ORDER BY 子句 避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。2. 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。3. 无法使用 Index 时,需要对 FileSort 方式进行调优。
INDEX a_b_c(a,b,c)
# order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
# 如果WHERE使用索引的最左前缀定义为常量,则 order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
# 不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE g = const ORDER BY b,c /* 丢失a索引 */
- WHERE a = const ORDER BY c /* 丢失b索引 */
#删除student和class表中的非主键索引
DROP INDEX idx_age ON student;
DROP INDEX idx_cid ON student;
DROP INDEX idx_monitor ON class;
SHOW INDEX FROM student;
SHOW INDEX FROM class;
#此时表中没有ORDER BY字段的相关索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid;
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10;
#order by时不limit,索引失效,此时并不包含where筛选条件
#创建索引
CREATE INDEX idx_age_classid_name ON student (age,classid,NAME);
#不限制,索引失效
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid;
#以下两种情况均可使用刚建的联合索引
EXPLAIN SELECT SQL_NO_CACHE age,classid,name,id FROM student ORDER BY age,classid;
#增加limit过滤条件,使用上索引了。
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10;
key_len为73,是因为用到了整个联合索引。(age是INT类型4个字节 + 非空1个字节,classid与age同理,name是VARCHAR20:20*3 = 60,再加上非空1个字节、可变长2个字节,60+1+2=63,总共63+5+5=73)。
#创建索引age,classid,stuno
CREATE INDEX idx_age_classid_stuno ON student (age,classid,stuno);
SHOW INDEX FROM student;
先展示一下此时student表中都存在哪些索引,下面所说的索引失效是针对下面这张运行结果图中的索引而言的。
#以下哪些索引失效?
#order by时顺序错误,索引失效
EXPLAIN SELECT * FROM student ORDER BY classid LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY classid,NAME LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY NAME,classid,age LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY classid,age,stuno LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10; #用idx_age_classid_stuno索引
EXPLAIN SELECT * FROM student ORDER BY age,classid LIMIT 10; #用索引idx_age_classid_name
EXPLAIN SELECT * FROM student ORDER BY age LIMIT 10; #用索引idx_age_classid_name
#order by时规则不一致, 索引失效 (顺序错,不索引;方向反,不索引)
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY age ASC,classid DESC LIMIT 10; #索引失效
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10; #用索引idx_age_classid_name
#order by和where结合使用时,即使没有limit,也会用到索引
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid; #用索引idx_age_classid_stuno
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid,NAME; #用索引idx_age_classid_name
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age; #索引失效
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age LIMIT 10; #用索引idx_age_classid_name
CREATE INDEX idx_cid ON student(classid);
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age; #用索引idx_cid
关于filesort的相关优化问题:
DROP INDEX idx_age_classid_name ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_cid ON student;
SHOW INDEX FROM student;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;
#方案一: 为了去掉filesort我们可以把索引建成
CREATE INDEX idx_age_name ON student(age,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;
#方案二:
CREATE INDEX idx_age_stuno_name ON student(age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;
#删除方案二中创建的联合索引
DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;
结论:1. 两个索引同时存在, mysql 自动选择最优的方案。(对于这个例子, mysql 选择 idx_age_stuno_name)。但是, 随着数据量的变化,选择的索引也会随之变化的 。2. 当【范围条件】和【 group by 或者 order by 】的字段出现二选一时,优先观察条件字段的过 滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段 上。反之,亦然。
- group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接 使用索引。
- group by 先排序再分组,遵照索引建的最佳左前缀法则
- 当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置
- where效率高于having,能写在where限定的条件就不要写在having中了
- 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
- 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
#优化分页查询
#思路一
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
#思路二
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
理解方式一 :索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。 一个索引包含了满足查询结果的数据就叫做覆盖索引。理解方式二 :非聚簇复合索引的一种形式,它包括在查询里的 SELECT 、 JOIN 和 WHERE 子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。简单说就是, 索引列 + 主键 包含 SELECT 到 FROM 之间查询的列 。好处:1. 避免 Innodb 表进行索引的二次查询(回表)2. 可以把随机 IO 变成顺序 IO 加快查询效率弊端:索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。
先确保student表中只有一个主键索引,下面做测试:
CREATE INDEX idx_age_name ON student (age,NAME);
EXPLAIN SELECT * FROM student WHERE age <> 20;
EXPLAIN SELECT age,NAME FROM student WHERE age <> 20;
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';
EXPLAIN SELECT id,age FROM student WHERE NAME LIKE '%abc';