FCN(Fully Convilutional Networks)是语义分割领域的开山之作。FCN的提出是在2016年,相较于此前提出的AlexNet和VGG等卷积全连接的网络结构,FCN提出用卷积层代替全连接层来处理语义分割问题,这也是FCN的由来,即全卷积网络。FCN的关键点主要有三,一是全卷积进行特征提取和下采样,二是双线性插值进行上采样,三是跳跃连接进行特征融合。
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from torch.utils import model_zoo
from torchvision import models
class FCN8(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.feats = nn.Sequential(*feats[0:9])
self.feat3 = nn.Sequential(*feats[10:16])
self.feat4 = nn.Sequential(*feats[17:23])
self.feat5 = nn.Sequential(*feats[24:30])
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.requires_grad = False
self.fconn = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Dropout()
)
self.score_feat3 = nn.Conv2d(256, num_classes, 1)
self.score_feat4 = nn.Conv2d(512, num_classes, 1)
self.score_fconn = nn.Conv2d(4096, num_classes, 1)
def forward(self, x):
feats = self.feats(x)
feat3 = self.feat3(feats)
feat4 = self.feat4(feat3)
feat5 = self.feat5(feat4)
fconn = self.fconn(feat5)
score_feat3 = self.score_feat3(feat3)
score_feat4 = self.score_feat4(feat4)
score_fconn = self.score_fconn(fconn)
score = F.upsample_bilinear(score_fconn, score_feat4.size()[2:])
score += score_feat4
score = F.upsample_bilinear(score, score_feat3.size()[2:])
score += score_feat3
return F.upsample_bilinear(score, x.size()[2:])
下采样进行信息浓缩和上采样进行像素恢复
UNet进行了4次的最大池化下采样,每一次采样后都使用了卷积进行信息提取得到特征图,然后再经过4次上采样恢复输入像素尺寸。
但UNet最关键的、也是最特色的部分在于图中红色虚线的Skip Connection。
特点:每一次下采样都会有一个跳跃连接与对应的上采样进行级联,这种不同尺度的特征融合对上采样恢复像素大有帮助,具体来说就是高层(浅层)下采样倍数小,特征图具备更加细致的图特征,底层(深层)下采样倍数大,信息经过大量浓缩,空间损失大,但有助于目标区域(分类)判断,当high level和low level的特征进行融合时,分割效果往往会非常好。
import torch
from torch.nn import functional as F
class CNNLayer(torch.nn.Module):
def __init__(self, C_in, C_out):
'''
卷积层
:param C_in:
:param C_out:
'''
super(CNNLayer, self).__init__()
self.layer = torch.nn.Sequential(
torch.nn.Conv2d(C_in, C_out, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
torch.nn.BatchNorm2d(C_out),
torch.nn.Dropout(0.3),
torch.nn.LeakyReLU(),
torch.nn.Conv2d(C_out, C_out, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
torch.nn.BatchNorm2d(C_out),
torch.nn.Dropout(0.4),
torch.nn.LeakyReLU()
)
def forward(self, x):
return self.layer(x)
class DownSampling(torch.nn.Module):
def __init__(self, C):
'''
下采样
:param C:
'''
super(DownSampling, self).__init__()
self.layer = torch.nn.Sequential(
torch.nn.Conv2d(C, C,kernel_size=(3,3), stride=(2,2), padding=(1,1)),
torch.nn.LeakyReLU()
)
def forward(self, x):
return self.layer(x)
class UpSampling(torch.nn.Module):
def __init__(self, C):
'''
上采样
:param C:
'''
super(UpSampling, self).__init__()
self.C = torch.nn.Conv2d(C, C // 2, kernel_size=(1,1), stride=(1,1))
def forward(self, x, r):
up = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.C(up)
return torch.cat((x, r), 1)
class Unet(torch.nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.C1 = CNNLayer(3, 64)
self.D1 = DownSampling(64)
self.C2 = CNNLayer(64, 128)
self.D2 = DownSampling(128)
self.C3 = CNNLayer(128, 256)
self.D3 = DownSampling(256)
self.C4 = CNNLayer(256, 512)
self.D4 = DownSampling(512)
self.C5 = CNNLayer(512, 1024)
self.U1 = UpSampling(1024)
self.C6 = CNNLayer(1024, 512)
self.U2 = UpSampling(512)
self.C7 = CNNLayer(512, 256)
self.U3 = UpSampling(256)
self.C8 = CNNLayer(256, 128)
self.U4 = UpSampling(128)
self.C9 = CNNLayer(128, 64)
self.pre = torch.nn.Conv2d(64, 3, kernel_size=(3,3), stride=(1,1), padding=(1,1))
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
'''
U型结构
:param x:
:return:
'''
R1 = self.C1(x)
R2 = self.C2(self.D1(R1))
R3 = self.C3(self.D2(R2))
R4 = self.C4(self.D3(R3))
Y1 = self.C5(self.D4(R4))
O1 = self.C6(self.U1(Y1, R4))
O2 = self.C7(self.U2(O1, R3))
O3 = self.C8(self.U3(O2, R2))
O4 = self.C9(self.U4(O3, R1))
return self.sigmoid(self.pre(O4))
if __name__ == '__main__':
a = torch.randn(2, 3, 256, 256) #.cuda()
net = Unet() #.cuda()
print(net(a).shape)
import torch
import torch.nn as nn
import torch.nn.functional as F
class REBNCONV(nn.Module):
def __init__(self, in_ch=3, out_ch=3, dirate=1):
super(REBNCONV, self).__init__()
self.conv_s1 = nn.Conv2d(in_ch, out_ch, kernel_size=(3, 3), padding=(1 * dirate, 1 * dirate),
dilation=(1 * dirate, 1 * dirate))
self.bn_s1 = nn.BatchNorm2d(out_ch)
self.relu_s1 = nn.ReLU(inplace=True)
def forward(self, x):
hx = x
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
return xout
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
def _upsample_like(src, tar):
'''
:param src:
:param tar:
:return:
'''
src = F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=True)
return src
### RSU-7 ###
class RSU7(nn.Module): # UNet07DRES(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU7, self).__init__()
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
def forward(self, x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx = self.pool4(hx4)
hx5 = self.rebnconv5(hx)
hx = self.pool5(hx5)
hx6 = self.rebnconv6(hx)
hx7 = self.rebnconv7(hx6)
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
hx6dup = _upsample_like(hx6d, hx5)
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
hx5dup = _upsample_like(hx5d, hx4)
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
hx4dup = _upsample_like(hx4d, hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
return hx1d + hxin
### RSU-6 ###
class RSU6(nn.Module): # UNet06DRES(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU6, self).__init__()
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
def forward(self, x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx = self.pool4(hx4)
hx5 = self.rebnconv5(hx)
hx6 = self.rebnconv6(hx5)
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
hx5dup = _upsample_like(hx5d, hx4)
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
hx4dup = _upsample_like(hx4d, hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
return hx1d + hxin
### RSU-5 ###
class RSU5(nn.Module): # UNet05DRES(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU5, self).__init__()
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
def forward(self, x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx5 = self.rebnconv5(hx4)
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
hx4dup = _upsample_like(hx4d, hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
return hx1d + hxin
### RSU-4 ###
class RSU4(nn.Module): # UNet04DRES(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU4, self).__init__()
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
def forward(self, x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx4 = self.rebnconv4(hx3)
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
return hx1d + hxin
### RSU-4F ###
class RSU4F(nn.Module): # UNet04FRES(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU4F, self).__init__()
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
def forward(self, x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx2 = self.rebnconv2(hx1)
hx3 = self.rebnconv3(hx2)
hx4 = self.rebnconv4(hx3)
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
return hx1d + hxin
##### U^2-Net ####
class U2NET(nn.Module):
def __init__(self, in_ch=3, out_ch=1):
super(U2NET, self).__init__()
self.stage1 = RSU7(in_ch, 32, 64)
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.stage2 = RSU6(64, 32, 128)
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.stage3 = RSU5(128, 64, 256)
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.stage4 = RSU4(256, 128, 512)
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.stage5 = RSU4F(512, 256, 512)
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.stage6 = RSU4F(512, 256, 512)
# decoder
self.stage5d = RSU4F(1024, 256, 512)
self.stage4d = RSU4(1024, 128, 256)
self.stage3d = RSU5(512, 64, 128)
self.stage2d = RSU6(256, 32, 64)
self.stage1d = RSU7(128, 16, 64)
self.side1 = nn.Conv2d(64, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.side2 = nn.Conv2d(64, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.side3 = nn.Conv2d(128, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.side4 = nn.Conv2d(256, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.side5 = nn.Conv2d(512, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.side6 = nn.Conv2d(512, out_ch, kernel_size=(3, 3), padding=(1, 1))
self.outconv = nn.Conv2d(6, out_ch, kernel_size=(1, 1))
def forward(self, x):
hx = x
# stage 1
hx1 = self.stage1(hx)
hx = self.pool12(hx1)
# stage 2
hx2 = self.stage2(hx)
hx = self.pool23(hx2)
# stage 3
hx3 = self.stage3(hx)
hx = self.pool34(hx3)
# stage 4
hx4 = self.stage4(hx)
hx = self.pool45(hx4)
# stage 5
hx5 = self.stage5(hx)
hx = self.pool56(hx5)
# stage 6
hx6 = self.stage6(hx)
hx6up = _upsample_like(hx6, hx5)
# -------------------- decoder --------------------
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
hx5dup = _upsample_like(hx5d, hx4)
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
hx4dup = _upsample_like(hx4d, hx3)
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
# side output
d1 = self.side1(hx1d)
d2 = self.side2(hx2d)
d2 = _upsample_like(d2, d1)
d3 = self.side3(hx3d)
d3 = _upsample_like(d3, d1)
d4 = self.side4(hx4d)
d4 = _upsample_like(d4, d1)
d5 = self.side5(hx5d)
d5 = _upsample_like(d5, d1)
d6 = self.side6(hx6)
d6 = _upsample_like(d6, d1)
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
d4), torch.sigmoid(d5), torch.sigmoid(d6)
### U^2-Net small ###
class U2NETP(nn.Module):
def __init__(self, in_ch=3, out_ch=1):
super(U2NETP, self).__init__()
# 左一
self.stage1 = RSU7(in_ch, 16, 64)
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
# 左2
self.stage2 = RSU6(64, 16, 64)
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
# 左3
self.stage3 = RSU5(64, 16, 64)
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
# 左4
self.stage4 = RSU4(64, 16, 64)
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
# 左5
self.stage5 = RSU4F(64, 16, 64)
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
# 左6
self.stage6 = RSU4F(64, 16, 64)
# decoder
self.stage5d = RSU4F(128, 16, 64)
self.stage4d = RSU4(128, 16, 64)
self.stage3d = RSU5(128, 16, 64)
self.stage2d = RSU6(128, 16, 64)
self.stage1d = RSU7(128, 16, 64)
self.side1 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.side2 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.side3 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.side4 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.side5 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.side6 = nn.Conv2d(64, out_ch, (3, 3), padding=(1, 1))
self.outconv = nn.Conv2d(6, out_ch, kernel_size=(1, 1))
def forward(self, x):
hx = x
# stage 1
hx1 = self.stage1(hx)
hx = self.pool12(hx1)
# stage 2
hx2 = self.stage2(hx)
hx = self.pool23(hx2)
# stage 3
hx3 = self.stage3(hx)
hx = self.pool34(hx3)
# stage 4
hx4 = self.stage4(hx)
hx = self.pool45(hx4)
# stage 5
hx5 = self.stage5(hx)
hx = self.pool56(hx5)
# stage 6
hx6 = self.stage6(hx)
hx6up = _upsample_like(hx6, hx5)
# decoder
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
hx5dup = _upsample_like(hx5d, hx4)
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
hx4dup = _upsample_like(hx4d, hx3)
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
hx3dup = _upsample_like(hx3d, hx2)
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
hx2dup = _upsample_like(hx2d, hx1)
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
# side output
d1 = self.side1(hx1d)
d2 = self.side2(hx2d)
d2 = _upsample_like(d2, d1)
d3 = self.side3(hx3d)
d3 = _upsample_like(d3, d1)
d4 = self.side4(hx4d)
d4 = _upsample_like(d4, d1)
d5 = self.side5(hx5d)
d5 = _upsample_like(d5, d1)
d6 = self.side6(hx6)
d6 = _upsample_like(d6, d1)
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
d4), torch.sigmoid(d5), torch.sigmoid(d6)
if __name__ == '__main__':
model = U2NET(in_ch=3, out_ch=1)
print(model)
x = torch.randn(1, 3, 224, 224)
print(model(x)[0].shape)
SegNet网络是典型的编码-解码结构。SegNet编码器网络由VGG16的前13个卷积层构成,所以通常是使用VGG16的预训练权重来进行初始化。每个编码器层都有一个对应的解码器层,因此解码器层也有13层。编码器最后的输出输入到softmax分类器中,输出每个像素的类别概率。SegNet如下图所示。
…实现太简单,不写了,以后写吧
其实还有deeplab系列,也后面补充
常用的分类损失均可用作语义分割的损失函数。
最常用的就是交叉熵损失函数,
语义分割作为经典的图像分割问题,其本质上还是一种图像像素分类。
语义分割常见的评价指标包括
像素准确率跟分类中的准确率含义一样,即所有分类正确的像素数占全部像素的比例。准确率 ,参考分类算法
PA的计算公式如下:
平均像素准确率(MPA)。
平均像素准确率其实更应该叫平均像素精确率,
是指分别计算每个类别分类正确的像素数占所有预测为该类别像素数比例的平均值。
所以,从定义上看,这是精确率(Precision)的定义,MPA的计算公式如下:
平均交并比(MIoU)。 交并比(Intersection over Union)的定义很简单,将标签图像和预测图像看成是两个集合,计算两个集合的交集和并集的比值。而平均交并比则是将所有类的IoU取平均。 MIoU的计算公式如下:
Dice系数。 Dice系数是一种度量两个集合相似性的函数,是语义分割中最常用的评价指标之一。Dice系数定义为两倍的交集除以像素和,跟IoU有点类似,其计算公式如下:
dice本质上跟分类指标中的F1-Score类似。作为最常用的分割指标之一,实现方式 如下:
import torch
def dice_coef(pred, target):
""" Dice = (2*|X & Y|)/ (|X|+ |Y|) = 2*sum(|A*B|)/(sum(A^2)+sum(B^2)) """
smooth = 1.
m1 = pred.reshape(-1).float()
m2 = target.reshape(-1).float()
intersection = (m1 * m2).sum().float()
dice = (2. * intersection + smooth) / (torch.sum(m1*m1) + torch.sum(m2*m2) + smooth)
return dice
参考:深度学习分割理论.