一.pandas基础
1.pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。(百度百科)
2.pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包,现已经取代R称为数据分析的主要工具。
3.类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame(R的数据结构) 两个核心数据结构展开的 。
4.Series 和 DataFrame 分别对应于一维的序列和二维的表结构。
5.pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
二.Series
Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:
示例1
虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。
Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:
示例2
Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。
PS:
Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。
Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。
另外,Series 对象和它的 index 都含有一个 name 属性:
示例3
三.DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。
DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:
示例4
虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。
较完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:
示例5
同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:
示例6
DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。
四.对象属性
1.重新索引
Series 对象的重新索引通过其 .reindex(index=None,kwargs) 方法实现。kwargs 中常用的参数有俩:method=None,fill_value=np.NaN:
示例1
.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None} 参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)
DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method 参数只能应用于行,即轴 0。
示例2
不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method='').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用 index=['a','b','d','c'] 的话就不行。
2.删除指定轴上的项
即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:
示例3
.drop() 返回的是一个新对象,元对象不会被改变。
3.索引和切片
就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。
不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。
示例4
这里 ser 和 df只有 index 不同——ser 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'a' 这样的字符串索引时,结果就包含了这个边界元素。
另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。
可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:
示例6
而不使用 ix ,直接切的情况就特殊了:
索引时,选取的是列
切片时,选取的是行
这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。
示例7
使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):
示例8
4.算术运算和数据对齐
pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。
示例1
DataFrame 的对齐操作会同时发生在行和列上。
当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()。
Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。
5.函数应用和映射
Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。
当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。
示例2
6.排序和排名
Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。
若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。
在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)列进行排序(不能对行使用 by 参数):
示例3.0
示例3.1
示例3.2
排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first。
示例4
注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。
DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。
7.统计方法
pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。
比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:
示例5
其他常用的统计方法有:
其他方法
五.处理缺失数据
pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。
处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。
1.is(not)null
这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。
2.dropna
对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。
问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。
3.fillna
fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。
4.inplace 参数
Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。
(此文章仅作为个人学习笔记使用,如有错误欢迎指正~)