Python数据可视化大屏最全教程(全)

阅读本文大约需要3分钟

主要内容:数据分析。

适用人群:Python初学者,数据分析师,或有志从事数据分析工作的人员。

准备软件:Anaconda(Spyder:代码编译)、Navicat Premium 12(数据库)。

Python数据可视化大屏最全教程(全)_第1张图片

从事IT项目管理这么多年,基本上已经遗弃编程技能,但从2019年开始接触Python,深深地迷上了这门语言,像硬件集成、数据分析,我都会用python来写。晓风想通过本文,让初学者们学会以下内容:

1、Pyecharts图表;

2、连接数据库;

3、大屏看板-监控中心。

今天,我们讲:3、大屏看板如何布局

首先,我们自己先拟个大屏的草稿(如上图),把大屏分割成8个部分(Part0-7)。

Python数据可视化大屏最全教程(全)_第2张图片

大屏内容设计好后,接上文,我们把图表的函数都用代码写出来

from pyecharts import options as opts
from pyecharts.charts import Bar,Gauge,Pie,Page,Funnel,Geo,Scatter3D
import random


def bar(): #柱状图
    cate = ['1月', '2月', '3月', '4月', '5月', '6月']
    c = (      
         Bar()
            .add_xaxis(cate)
            .add_yaxis("订单数", [random.randint(100, 200) for _ in cate])
            .add_yaxis("完成数", [random.randint(50, 100) for _ in cate])
            .set_series_opts(
                             label_opts=opts.LabelOpts(is_show=True,color="#2CB34A")
                             
            )
            .set_global_opts(title_opts=opts.TitleOpts(title="2021年订单推移图",
                                                       title_textstyle_opts=opts.TextStyleOpts(color="#2CB34A"),
                                                       pos_left="5%"),
                             legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#2CB34A")),
                             xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A")),
                             yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A"))
                                                     
            )
            .set_colors(["blue", "green"])
            #.render("bar_stack0.html")
    )
    return c


def tab0(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=20))))
    return c


def tab1(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=25))))
    return c


def gau():#仪表图
    c = (
        Gauge(init_opts=opts.InitOpts(width="400px", height="400px"))
            .add(series_name="库位利用率", data_pair=[["", 90]])
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            tooltip_opts=opts.TooltipOpts(is_show=True, formatter="{a} 
{b} : {c}%"), ) #.render("gauge.html") ) return c def radius(): cate = ['客户A', '客户B', '客户C', '客户D', '客户E', '其他客户'] data = [153, 124, 107, 99, 89, 46] c=Pie() c.add('', [list(z) for z in zip(cate, data)], radius=["30%", "75%"], rosetype="radius") c.set_global_opts(title_opts=opts.TitleOpts(title="客户销售额占比", padding=[1,250],title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF")), legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#FFFFFF"),type_="scroll",orient="vertical",pos_right="5%",pos_top="middle") ) c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) c.set_colors(['red',"orange", "yellow", "green", "Cyan", "purple"]) return c def funnel(): cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功'] data = [30398, 15230, 10045, 8109, 5698] c = Funnel() c.add("用户数", [list(z) for z in zip(cate, data)], sort_='ascending', label_opts=opts.LabelOpts(position="inside")) c.set_global_opts(title_opts=opts.TitleOpts(title="")) return c def geo(): city_num = [('武汉',105),('成都',70),('北京',99), ('西安',80),('杭州',60),('贵阳',34), ('上海',65),('深圳',54),('乌鲁木齐',76), ('哈尔滨',47),('兰州',56),('信阳',85)] start_end = [('宁波','成都'),('武汉','北京'),('武汉','西安'), ('长沙','杭州'),('武汉','贵阳'),('武汉','上海'), ('甘肃','深圳'),('北京','乌鲁木齐'),('上海','哈尔滨'), ('武汉','兰州'),('西藏','信阳')] c = Geo() c.add_schema(maptype='china', itemstyle_opts=opts.ItemStyleOpts(color='#323c48', border_color='white')) # 4.添加数据 c.add('', data_pair=city_num, color='white') c.add('', data_pair=start_end, type_="lines",label_opts=opts.LabelOpts(is_show=False), effect_opts=opts.EffectOpts(symbol="arrow", color='gold', symbol_size=7)) c.set_global_opts( title_opts = opts.TitleOpts(title="")) return c def scatter3D(): data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(80)] c = (Scatter3D() .add("", data) .set_global_opts( title_opts=opts.TitleOpts(""), ) )

接下来,我们引用Page函数,将所有图表堆积在一个页面中,代码如下

from pyecharts.charts import Page
page = Page() 
page.add(
         tab0("OFFICETOUCH","#2CB34A"), 
         bar(),
         tab1("数据可视化大屏","#2CB34A"),
         gau(),
         radius(),
         funnel(),
         geo(),
         scatter3D()
         )
page.render("datacenter.html")

我们运行下上述两段代码,发现布局是按照从上到下一个个呈现的,到此我们完成了一半的编码

Python数据可视化大屏最全教程(全)_第3张图片

为了将图表按照我们的草稿布局,我们再引用HTML(from bs4 import BeautifulSoup)

from bs4 import BeautifulSoup
with open("datacenter.html", "r+", encoding='utf-8') as html:
    html_bf = BeautifulSoup(html, 'lxml')
    divs = html_bf.select('.chart-container')
    divs[0]["style"] = "width:10%;height:10%;position:absolute;top:0;left:2%;"
    divs[1]["style"] = "width:40%;height:40%;position:absolute;top:12%;left:0;"  
    divs[2]["style"] = "width:35%;height:10%;position:absolute;top:2%;left:30%;"
    divs[3]["style"] = "width:40%;height:40%;position:absolute;top:10%;left:28%;"
    divs[4]["style"] = "width:40%;height:35%;position:absolute;top:12%;left:55%;"
    divs[5]["style"] = "width:30%;height:35%;position:absolute;top:60%;left:2%;"
    divs[6]["style"] = "width:60%;height:50%;position:absolute;top:45%;left:15%;"
    divs[7]["style"] = "width:35%;height:40%;position:absolute;top:50%;left:60%;"
    body = html_bf.find("body")
    body["style"] = "background-image: "  # 背景颜色
    html_new = str(html_bf)
    html.seek(0, 0)
    html.truncate()
    html.write(html_new)
    html.close()

代码中的divs[0]["style"] = "width:10%;height:10%;position:absolute;top:0;left:2%;" 即是我们对Part0的宽度、高度、位置、上边距、左边距的定义,这里我们用百分比以达到屏幕自适应的效果。

最后,我们还可以设置一张背景图,代码合起来如下

from pyecharts import options as opts
from pyecharts.charts import Bar,Gauge,Pie,Page,Funnel,Geo,Scatter3D
import random




def bar(): #柱状图
    cate = ['1月', '2月', '3月', '4月', '5月', '6月']
    c = (      
         Bar()
            .add_xaxis(cate)
            .add_yaxis("订单数", [random.randint(100, 200) for _ in cate])
            .add_yaxis("完成数", [random.randint(50, 100) for _ in cate])
            .set_series_opts(
                             label_opts=opts.LabelOpts(is_show=True,color="#2CB34A")
                             
            )
            .set_global_opts(title_opts=opts.TitleOpts(title="2021年订单推移图",
                                                       title_textstyle_opts=opts.TextStyleOpts(color="#2CB34A"),
                                                       pos_left="5%"),
                             legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#2CB34A")),
                             xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A")),
                             yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A"))
                                                     
            )
            .set_colors(["blue", "green"])
            #.render("bar_stack0.html")
    )
    return c


def tab0(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=20))))
    return c


def tab1(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=25))))
    return c






def gau():#仪表图
    c = (
        Gauge(init_opts=opts.InitOpts(width="400px", height="400px"))
            .add(series_name="库位利用率", data_pair=[["", 90]])
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            tooltip_opts=opts.TooltipOpts(is_show=True, formatter="{a} 
{b} : {c}%"), ) #.render("gauge.html") ) return c def radius(): cate = ['客户A', '客户B', '客户C', '客户D', '客户E', '其他客户'] data = [153, 124, 107, 99, 89, 46] c=Pie() c.add('', [list(z) for z in zip(cate, data)], radius=["30%", "75%"], rosetype="radius") c.set_global_opts(title_opts=opts.TitleOpts(title="客户销售额占比", padding=[1,250],title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF")), legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#FFFFFF"),type_="scroll",orient="vertical",pos_right="5%",pos_top="middle") ) c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) c.set_colors(['red',"orange", "yellow", "green", "Cyan", "purple"]) return c def funnel(): cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功'] data = [30398, 15230, 10045, 8109, 5698] c = Funnel() c.add("用户数", [list(z) for z in zip(cate, data)], sort_='ascending', label_opts=opts.LabelOpts(position="inside")) c.set_global_opts(title_opts=opts.TitleOpts(title="")) return c def geo(): city_num = [('武汉',105),('成都',70),('北京',99), ('西安',80),('杭州',60),('贵阳',34), ('上海',65),('深圳',54),('乌鲁木齐',76), ('哈尔滨',47),('兰州',56),('信阳',85)] start_end = [('宁波','成都'),('武汉','北京'),('武汉','西安'), ('长沙','杭州'),('武汉','贵阳'),('武汉','上海'), ('甘肃','深圳'),('北京','乌鲁木齐'),('上海','哈尔滨'), ('武汉','兰州'),('西藏','信阳')] c = Geo() c.add_schema(maptype='china', itemstyle_opts=opts.ItemStyleOpts(color='#323c48', border_color='white')) # 4.添加数据 c.add('', data_pair=city_num, color='white') c.add('', data_pair=start_end, type_="lines",label_opts=opts.LabelOpts(is_show=False), effect_opts=opts.EffectOpts(symbol="arrow", color='gold', symbol_size=7)) c.set_global_opts( title_opts = opts.TitleOpts(title="")) return c def scatter3D(): data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(80)] c = (Scatter3D() .add("", data) .set_global_opts( title_opts=opts.TitleOpts(""), ) ) return c page = Page() page.add( tab0("OFFICETOUCH","#2CB34A"), bar(), tab1("数据可视化大屏","#2CB34A"), gau(), radius(), funnel(), geo(), scatter3D() ) page.render("datacenter.html") #os.system("scatter.html") from bs4 import BeautifulSoup with open("datacenter.html", "r+", encoding='utf-8') as html: html_bf = BeautifulSoup(html, 'lxml') divs = html_bf.select('.chart-container') divs[0]["style"] = "width:10%;height:10%;position:absolute;top:0;left:2%;" divs[1]["style"] = "width:40%;height:40%;position:absolute;top:12%;left:0;" divs[2]["style"] = "width:35%;height:10%;position:absolute;top:2%;left:30%;" divs[3]["style"] = "width:40%;height:40%;position:absolute;top:10%;left:28%;" divs[4]["style"] = "width:40%;height:35%;position:absolute;top:12%;left:55%;" divs[5]["style"] = "width:30%;height:35%;position:absolute;top:60%;left:2%;" divs[6]["style"] = "width:60%;height:50%;position:absolute;top:45%;left:15%;" divs[7]["style"] = "width:35%;height:40%;position:absolute;top:50%;left:60%;" body = html_bf.find("body") body["style"] = "background-image: url(bgd.jpg)" # 背景颜色 html_new = str(html_bf) html.seek(0, 0) html.truncate() html.write(html_new)

效果图如下:

Python数据可视化大屏最全教程(全)_第4张图片

学习到了这里,你是否能独立完成数据可视化的工作了啊?晓风终于不辱使命,向大家完整地介绍了如何使用Python绘制数据可视化大屏。晓风还会继续努力,为大家带来更多有趣、实用、简单地Python功能,愿我们一起成长!

另两篇教程,如下:

1、Python大屏看板最全教程之Pyecharts图表:https://blog.csdn.net/weixin_42341655/article/details/118078089

2、Python大屏看板最全教程之数据库连接https://blog.csdn.net/weixin_42341655/article/details/118096691

如果觉得有用的话,请帮忙点赞、关注、收藏哦,感谢您的支持!

你可能感兴趣的:(ofter数据科学,python,数据可视化,数据分析,可视化,数据库)