- 在MATLAB中使用GPU加速计算及多GPU配置
东北豆子哥
CUDA数值计算/数值优化Matlab/Octavematlab
文章目录在MATLAB中使用GPU加速计算及多GPU配置一、基本GPU加速使用1.检查GPU可用性2.将数据传输到GPU3.执行GPU计算二、多GPU配置与使用1.选择特定GPU设备2.并行计算工具箱中的多GPU支持3.数据并行处理(适用于深度学习)三、高级技巧1.异步计算2.优化GPU内存使用3.使用GPU加速函数四、注意事项在MATLAB中使用GPU加速计算及多GPU配置MATLAB提供了强大
- l351墨水灯和缺纸灯闪烁_爱普生L351有墨水,可缺墨的灯一直闪,怎么解决?
车英赫
l351墨水灯和缺纸灯闪烁
展开全部打印机l351墨水灯闪烁时,请检查墨仓4个颜色中的墨水量是否有低于20毫米的状态。1、如有请将低62616964757a686964616fe4b893e5b19e31333433623061于20毫米的墨仓中添加墨水到20毫米以上,此时墨水灯仍然会闪烁,是正常现象。这时红灯闪是无法消除的,可以继续打印没有任何影响。等红灯常亮的时候建议加满四色墨水,按维护键(圆圈里面一个倒三角的按键)复位
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 和李沐老师学深度学习--2.数据操作部分代码实现(学习笔记)
大家对代码有不懂地方都可以上网去查找,最好是有一定的数据分析基础比较容易理解,李沐老师课程视频链接我放在这里了大家有不懂都可以观看课程进行学习04数据操作+数据预处理【动手学深度学习v2】_哔哩哔哩_bilibili深度学习课程电子书:大家可以使用翻译插件观看书的内容Preface—DiveintoDeepLearning1.0.3documentation深度学习github项目:https:/
- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- SQL Server的个人学习笔记
萌尛喵
sql学习数据库
1.基础SQLServer是由Microsoft开发和销售的关系数据库管理系统或RDBMS。SQLServer建立于SOL之上,是一种用于关系数据交互的标准编程语言。2.组件SQLServer主要由数据库引擎和SQLOS两个组件组成。①数据库引擎SQLServer的核心组件是数据库引擎。数据库引擎由处理查询的关系引擎和管理数据库文件、页面、索引等的存储组成。数据库引擎也创建并执行数据库对象,如存储
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 国产化芯片ZCC3790--同步升降压控制器的全新选择, 替代LT3790
2501_92222359
嵌入式硬件
ZCC3790:同步升降压控制器的全新选择,替代LT3790在电源管理领域,高效、可靠的电压调节器至关重要。ZCC3790,一款同步4开关升降压电压/电流调节器控制器,凭借卓越性能,成为LT3790的理想替代品。一、产品概述ZCC3790能在输入电压高于、低于或等于输出电压时,精准调节输出电压、输出电流或输入电流。其恒定频率、电流模式架构,可使工作频率在200kHz至700kHz间调整或同步,无需
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- 达人评测 锐龙9 8940HX和r9 7940HX差距大不大
ThantZinHtay
cpu
R97940HX采用了Zen4架构,5nm制作工艺8核16线程,主频2.4GHz,最高睿频5.2GHz三级缓存64MB功耗55w选R97940HX还是锐龙98940HX这些点很重要http://www.adiannao.cn/dyR98940HX采用Zen5架构和5nm生产工艺16核心32线程基础频率为2.3GHz,最高加速频率5.3GHz三级缓存为64MB热设计功耗(TDP)55W
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- computed()、watch() 与 watchEffect()
前端岳大宝
前端框架Vuevue.jsjavascript前端
下面,我们来系统的梳理关于computed、watch与watchEffect的基本知识点:一、核心概念与响应式基础1.1响应式依赖关系Vue的响应式系统基于依赖收集和触发更新的机制:响应式数据依赖收集创建依赖关系数据变更触发更新执行副作用1.2三大API对比特性computedwatchwatchEffect返回值Ref对象停止函数停止函数依赖收集自动手动指定自动执行时机惰性求值响应变化立即执行
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- 《现代通信原理与技术》模拟调制与解调—FM 调制实验报告
不想秃头的程序
人工智能matlab信息与通信信号处理
摘要本实验旨在通过MATLAB软件进行模拟调制与解调的实践,加深对频率调制(FrequencyModulation,FM)原理的理解,并掌握FM调制与解调的实现方法。关键词:MATLAB引言在现代通信系统中,调制技术是实现信息传输的核心方法之一。频率调制(FrequencyModulation,FM)作为一种重要的模拟调制方式,通过改变载波信号的频率来传递信息,广泛应用于广播、电视、无线通信等领域
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- Python训练营打卡——DAY16(2025.5.5)
cosine2025
Python训练营打卡python开发语言机器学习
目录一、NumPy数组基础笔记1.理解数组的维度(Dimensions)2.NumPy数组与深度学习Tensor的关系3.一维数组(1DArray)4.二维数组(2DArray)5.数组的创建5.1数组的简单创建5.2数组的随机化创建5.3数组的遍历5.4数组的运算6.数组的索引6.1一维数组索引6.2二维数组索引6.3三维数组索引二、SHAP值的深入理解三、总结1.NumPy数组基础总结2.SH
- CG-23H 超声波风速风向传感器--易风(加热型)
sun15369027572
大数据
产品概述易风超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用发送的声波脉冲,测量接收端的时间或频率(多普勒变换)差别来计算风速和风向。该传感器可以同时测量风速,风向的瞬时数值,支持电流、电压信号输出以及RS485、NB-IoT、LoRa、4G及以太网等传输方式。整机外壳采用ABS材质,具有重量轻、没有移动部件、坚固实用的特点,而且不需维护和现场校准,能同时输出风速和风向。可以与
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- Redis配置与优化
?ccc?
redis数据库缓存
目录一:Redis介绍1:关系数据库与非关系型数据库2:Redis基础2.1Redis简介2.2Redis安装部署2.3配置参数3:Redis命令工具3.1redis-cli命令行工具3.2redis-benchmark测试工具4:Redis数据库常用命令4.1key相关命令4.2多数据库常用命令二:Redis持久化1:RDB和AOF的区别2:RDB和AOF的优缺点3:Redis持久化配置三:性能
- PyWavelets
shangjg3
PyTorchpytorch人工智能python
PyWavelets(pywt)是Python中用于小波变换的核心库,提供了丰富的信号处理和图像处理功能。以下是其核心功能的详细介绍:1.小波变换基础(1)离散小波变换(DWT)将信号分解为近似系数(Approximation)和细节系数(Detail)。importpywtimportnumpyasnp#示例信号signal=np.array([1
- 【Pandas】pandas DataFrame resample
liuweidong0802
DataFramepandas
Pandas2.2DataFrameTimeSeries-related方法描述DataFrame.asfreq(freq[,method,how,…])用于**将时间序列数据转换为指定频率(resampletofrequency)**的方法DataFrame.asof(where[,subset])用于查找时间序列中最接近指定时间点的非NaN值的方法DataFrame.shift([period
- 【Pandas】pandas Series tz_convert
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesTimeSeries-related方法描述Series.asfreq(freq[,method,how,…])用于将时间序列数据转换为指定的频率Series.asof(where[,subset])用于返回时间序列中指定索引位置的最近一个非缺失值Series.shift([periods,freq,axis,…])用于将时间序列数据沿指定轴移动指定的周期数Serie
- 【策划所需编程知识】
叫我六胖子
笔记游戏
1、TCP与UDP名称TCPUDP方式先奏后斩先斩后奏优点防外挂,慢但不出错用户体验好常用游戏MMORPGFPS、MOBA、IO类2、弱联网与实时联网名称弱联网实时联网方式只在必要时链接频率很高特点频率低频率高特点对宽带要求不高对宽带要求高常用游戏卡牌、放置挂机、轻度休闲、SLGFPS、MOBA、IO类
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 相机-IMU联合标定:IMU更新频率
吃水果不削皮
视觉组合导航ROSVIOkalibr
文章目录简介⚠️IMU频率参数错误设置的影响❌相机-IMU联合标定失败:Optimizationfailed!确定IMU更新频率直接通过rostopichz检查实际频率检查IMU驱动或数据手册从bag文件统计频率在这里插入图片描述修改`update_rate`的注意事项**最终建议****常见问题**简介IMU更新频率参数在Kalibr标定中直接影响标定精度和系统性能。高频率的IMU数据能提供更密
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement