对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)

使用MediaPipe

1.单帧图像

代码讲解(1)

# 导包
import cv2
import mediapipe as mp
import matplotlib.pyplot as plt

if __name__ == '__main__':
    # 导入分割模块
    seg = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=0)

    # read img BGR to RGB
    img = cv2.imread("1.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.imshow(img)
    plt.show()

对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第1张图片

代码讲解(2)

    # 处理图像
    results = seg.process(img)

    # results的segmentation_mask提取mask
    mask = results.segmentation_mask

    plt.imshow(mask)
    plt.show()

 对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第2张图片

 代码讲解(3)

    # 将其转化False与True,以便处理
    mask = mask > 0.5

    plt.imshow(mask)
    plt.show()

对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第3张图片

 代码讲解(4)

    # 将其叠加成三通道
    mask_channels = np.stack([mask, mask, mask], axis=-1)

    # 背景的颜色定义
    MASK_COLOR = [0, 255, 255]

    # 背景大小与原图大小一致
    fg_img = np.zeros(img.shape, dtype=np.uint8)

    fg_img[:] = MASK_COLOR

    # 如果mask_channels为True则显示img,如果为False则显示背景
    FG_img = np.where(mask_channels, img, fg_img)

    # 显示从原图中抠出人体,但是背景为我们重新设置的颜色
    plt.imshow(FG_img)
    plt.show()

对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第4张图片

代码讲解(5)

    # 如果~mask_channels为True则显示img(mask_channels为False),如果为False则显示背景
    # mask_channels为False显示img,如果mask_channels为True显示fg_img
    BG_img = np.where(~mask_channels, img, fg_img)
    # 保留背景扣掉人
    plt.imshow(BG_img)
    plt.show()

 对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第5张图片

代码讲解(6)

    # 单独替换一张新的背景
    bg_img = cv2.imread("2.jpg")

    bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
    plt.imshow(bg_img)
    plt.show()

 对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第6张图片

代码讲解(7)

    print(bg_img.shape)
    BOTTOM = bg_img.shape[0]
    TOP = BOTTOM - img.shape[0]
    print(TOP)
    
    # 从中间开始取,这样更好对称
    LEFT = bg_img.shape[1] // 2 - img.shape[1] // 2
    print(LEFT)
    RIGHT = LEFT + img.shape[1]

    # left top : (TOP, LEFT)
    # right bottom: (BOTTOM, RIGHT)

    # 将背景大小换成适合原图大小
    new_bg = bg_img[TOP:BOTTOM, LEFT:RIGHT, :]
    print(new_bg.shape)

    # 将原图背景替换成
    BG_img = np.where(mask_channels, img, new_bg)

    plt.imshow(BG_img)
    plt.show()

 对应结果

对在运动的刘耕宏进行抠图(含单帧与视频的分割算法应用)_第7张图片

完整代码

import cv2
import numpy as np
import mediapipe as mp
import matplotlib.pyplot as plt

if __name__ == '__main__':
    seg = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=0)

    # read img BGR to RGB
    img = cv2.imread("1.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    print(img.shape)
    plt.imshow(img)
    plt.show()

    results = seg.process(img)
    # results的segmentation_mask提取mask
    mask = results.segmentation_mask
    plt.imshow(mask)
    plt.show()
    # 将其转化False与True,以便处理
    mask = mask > 0.5
    plt.imshow(mask)
    plt.show()

    # 将其叠加成三通道
    mask_channels = np.stack([mask, mask, mask], axis=-1)
    # 背景的颜色定义
    MASK_COLOR = [0, 255, 255]
    # 背景大小与原图大小一致
    fg_img = np.zeros(img.shape, dtype=np.uint8)
    fg_img[:] = MASK_COLOR

    # 如果mask_channels为True则显示img,如果为False则显示背景
    FG_img = np.where(mask_channels, img, fg_img)
    # 显示从原图中抠出人体,但是背景为我们重新设置的颜色
    plt.imshow(FG_img)
    plt.show()

    # 如果~mask_channels为True则显示img(mask_channels为False),如果为False则显示背景
    # mask_channels为False显示img,如果mask_channels为True显示fg_img
    BG_img = np.where(~mask_channels, img, fg_img)
    # 保留背景扣掉人
    plt.imshow(BG_img)
    plt.show()

    # 单独替换一张新的背景
    bg_img = cv2.imread("2.jpg")
    bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
    plt.imshow(bg_img)
    plt.show()

    print(bg_img.shape)
    BOTTOM = bg_img.shape[0]
    TOP = BOTTOM - img.shape[0]
    print(TOP)
    # 从中间开始取,这样更好对称
    LEFT = bg_img.shape[1] // 2 - img.shape[1] // 2
    print(LEFT)
    RIGHT = LEFT + img.shape[1]
    # left top : (TOP, LEFT)
    # right bottom: (BOTTOM, RIGHT)
    # 将背景大小换成适合原图大小
    new_bg = bg_img[TOP:BOTTOM, LEFT:RIGHT, :]
    print(new_bg.shape)

    # 将原图背景替换成
    BG_img = np.where(mask_channels, img, new_bg)
    plt.imshow(BG_img)
    plt.show()

2.视频

公用代码部分

import os
import sys
import time

import cv2
import numpy as np
import mediapipe as mp

BASE_DIR = os.path.dirname((os.path.abspath(__file__)))
print(BASE_DIR)
sys.path.append(BASE_DIR)

seg = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=0)

处理每帧的函数

1.将背景扣掉

def process_frame_fg(img):
    start = time.time()
    img = cv2.flip(img, 1)
    img.flags.writeable = False
    results = seg.process(img)
    mask = results.segmentation_mask.astype("uint8")

    # 将其叠加成三通道
    mask_channels = np.stack((mask, mask, mask), axis=-1) * 255
    mask_channels = mask_channels > 0.5
    # 背景的颜色定义
    MASK_COLOR = [0, 255, 255]

    # 背景大小与原图大小一致
    fg_img = np.zeros(img.shape, dtype=np.uint8)

    fg_img[:] = MASK_COLOR

    # 如果mask_channels为True则显示img,如果为False则显示背景
    FG_img = np.where(mask_channels, img, fg_img)

    # 显示从原图中抠出人体,但是背景为我们重新设置的颜色
    end = time.time()
    FPS = 1 / (end - start)
    FG_img = cv2.putText(FG_img, 'FPS' + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

    return FG_img

2.将前景扣掉

def process_frame_bg(img):
    start = time.time()
    img = cv2.flip(img, 1)
    img.flags.writeable = False
    results = seg.process(img)
    mask = results.segmentation_mask.astype("uint8")

    # 将其叠加成三通道
    mask_channels = np.stack([mask, mask, mask], axis=-1) * 255
    mask_channels = mask_channels > 0.5

    # 背景的颜色定义
    MASK_COLOR = [0, 255, 255]

    # 背景大小与原图大小一致
    fg_img = np.zeros(img.shape, dtype=np.uint8)

    fg_img[:] = MASK_COLOR

    # 如果~mask_channels为True则显示img(mask_channels为False),如果为False则显示背景
    # mask_channels为False显示img,如果mask_channels为True显示fg_img
    BG_img = np.where(~mask_channels, img, fg_img)
    end = time.time()
    FPS = 1 / (end - start)
    # 保留背景扣掉人
    BG_img = cv2.putText(BG_img, 'FPS' + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

    return BG_img

3.替换背景

def process_frame_newbg(img):
    start = time.time()
    img = cv2.flip(img, 1)
    img.flags.writeable = False
    results = seg.process(img)
    mask = results.segmentation_mask.astype("uint8")

    # 将其叠加成三通道
    mask_channels = np.stack([mask, mask, mask], axis=-1) * 255
    mask_channels = mask_channels > 0.5

    bg_img = cv2.imread("2.jpg")

    BOTTOM = bg_img.shape[0]
    TOP = BOTTOM - img.shape[0]

    # 从中间开始取,这样更好对称
    LEFT = bg_img.shape[1] // 2 - img.shape[1] // 2
    RIGHT = LEFT + img.shape[1]

    # left top : (TOP, LEFT)
    # right bottom: (BOTTOM, RIGHT)
    # 将背景大小换成适合原图大小
    new_bg = bg_img[TOP:BOTTOM, LEFT:RIGHT, :]

    # 将原图背景替换成
    BG_img = np.where(mask_channels, img, new_bg)

    end = time.time()
    FPS = 1 / (end - start)

    BG_img = cv2.putText(BG_img, 'FPS' + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

    return BG_img

实时摄像头捕捉

if __name__ == '__main__':
    t0 = time.time()
    cap = cv2.VideoCapture(0)
    cap.open(0)
    while cap.isOpened():
        success, frame = cap.read()
        if frame is None:
            print('ERROR')
            break
        if success == True:
            frame = process_frame_bg(frame)
            cv2.imshow("segmentation", frame)
            if ((time.time() - t0) // 1) == 30:
                sys.exit(0)
            cv2.waitKey(1)

    cap.release()
    cv2.destroyAllWindows()

亲测3个函数都能正常运行!

实时视频

if __name__ == '__main__':
    t0 = time.time()
    video_dirs = os.path.join(BASE_DIR, "1.mp4")
    cap = cv2.VideoCapture(video_dirs)
    while cap.isOpened():
        success, frame = cap.read()
        if frame is None:
            print('ERROR')
            break
        if success == True:
            frame = process_frame_fg(frame)
            cv2.imshow("segmentation", frame)
        cv2.waitKey(1)

    cap.release()
    cv2.destroyAllWindows()

运行结果

1.将背景扣掉

背景扣掉

2.将前景扣掉

前景扣掉

3.替换背景

背景替换

实时视频优化

选择一个函数进行优化(扣掉背景的)

完整代码

import cv2
import time
import numpy as np
from tqdm import tqdm
import mediapipe as mp

mp_pose = mp.solutions.pose
seg = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=0)


def process_frame_fg(img):
    start = time.time()
    img.flags.writeable = False
    results = seg.process(img)
    mask = results.segmentation_mask.astype("uint8")

    # 将其叠加成三通道
    mask_channels = np.stack((mask, mask, mask), axis=-1) * 255
    mask_channels = mask_channels > 0.5
    # 背景的颜色定义
    MASK_COLOR = [255, 255, 255]

    # 背景大小与原图大小一致
    fg_img = np.zeros(img.shape, dtype=np.uint8)

    fg_img[:] = MASK_COLOR

    # 如果mask_channels为True则显示img,如果为False则显示背景
    FG_img = np.where(mask_channels, img, fg_img)

    # 显示从原图中抠出人体,但是背景为我们重新设置的颜色
    end = time.time()
    FPS = 1 / (end - start)
    FG_img = cv2.putText(FG_img, 'FPS' + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

    return FG_img



def out_video(input):
    file = input.split("/")[-1]
    output = "out-seg-" + file
    print("It will start processing video: {}".format(input))
    cap = cv2.VideoCapture(input)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # # create VideoWriter,VideoWriter_fourcc is video decode
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    fps = cap.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(output, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))
    # the progress bar
    with tqdm(range(frame_count)) as pbar:

        while cap.isOpened():
            success, frame = cap.read()
            if not success:
                break
            try:
                frame = process_frame_fg(frame)
                out.write(frame)
                pbar.update(1)
            except:
                print("ERROR")
                pass
    pbar.close()
    cv2.destroyAllWindows()
    out.release()
    cap.release()
    print("{} finished!".format(output))


if __name__ == '__main__':
    video_dirs = "1.mp4"
    out_video(video_dirs)

运行结果

分割视频优化

你可能感兴趣的:(语义分割,Semantic,Segmentation,算法,计算机视觉,语义分割,MediaPipe,人工智能)