- 【自学笔记】Linux基础知识点总览-持续更新
Long_poem
笔记linux运维
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Linux基础知识点总览目录Linux简介文件和目录结构常用命令文件操作目录操作权限管理文本处理Shell脚本基础进程管理用户和组管理网络配置总结Linux基础知识点总览目录Linux简介文件和目录结构常用命令文件操作目录操作权限管理文本处理Shell脚本基础进程管理用户和组管理网络配置Linux简介Linux是一个基于Uni
- 通用AI Agent的进化图谱:架构革新与安全可控的双重突破——以Manus为范本的启示
我也秃了
人工智能架构安全
通用AIAgent的进化路径:架构创新与安全管控的双重突破引言近年来,AI智能体正经历前所未有的变革。2025年3月,中国团队Monica推出的全球首款通用AIAgent——Manus,以“全链路自主执行”为核心,通过多签名系统架构和渐进式任务执行引擎,实现了从“生成建议”到“自主闭环交付任务”的范式跃迁。具体而言,Manus通过规划(Planner)-执行(Executor)-验证(Verifi
- Flink Cdc TiDB详解
24k小善
flink大数据java
1.什么是FlinkTiDBCDC?简单说就是用Flink实时抓取TiDB数据库的数据变化(比如新增、修改、删除),并将这些变化数据以流的形式处理,用于实时分析、同步到其他系统等场景。TiDB本身是分布式数据库,而Flink是流处理引擎,两者的结合适合需要高吞吐、低延迟的大规模数据处理场景[7][8]。2.底层原理TiDB侧:通过TiCDC组件(TiDB的变更数据捕获工具)捕获数据变更,类似MyS
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- Flink CDC 与 SeaTunnel CDC 简单对比
窝窝和牛牛
flink大数据cdcSeaTunnel
FlinkCDC与SeaTunnelCDC简单对比CDC技术概述变更数据捕获(ChangeDataCapture,简称CDC)是一种用于捕获数据库中数据变更的技术,能够实时识别、捕获并输出数据库中的插入、更新和删除操作。CDC技术在现代数据架构中扮演着至关重要的角色,特别是在实时数据集成、数据同步和事件驱动架构等场景中。CDC的工作原理CDC主要通过以下几种方式捕获数据变更:基于日志的CDC:直接
- Python程序设计(入门)
xyyykx
python开发语言
目录一丶Python概述二丶Python数据类型三丶常用的进制四丶字符串型五丶程序控制结构六丶组合数据类型一丶Python概述Python是一种高级编程语言,由GuidovanRossum于1991年开发并发布。它具有简洁、易读、易学的语法特点,被广泛应用于多个领域,包括软件开发、数据科学、人工智能、网络编程等。以下是Python的一些主要特点和优势:简单易学:Python的语法简洁明了,易于理解
- Spring Boot 集成 Azure Key Vault
dan炒饭
springbootazure后端
之前做了集成AzureKeyVault的工作,发现微软的文档还是挺分散的,所以在这里总结下。这是官方的集成文档,可以自己改url换成中英文,英文阅读误解可能会更小点。这个教程的主要问题是需要用到AzureCLI来进行所有的配置。因为在一个组织中严格的软件限制可能会让你没法安装AzureCLI,本文主要阐述如何在portal.azure.com来进行配置。逐个说一下上述官方文档的几个重要步骤和概念。
- Python模块化设计 ——函数调用
不解风情的老妖怪哎
Python程序设计题库pythonwindows开发语言
1.以下代码的输出结果是()。defyoung(age):if25=60:print(“作为一个老师,你可以退休了”)else:print(“作为一个老师,你很有爱心”)young(42)A、作为一个老师,你很年轻B、作为一个老师,你太年轻了C、作为一个老师,你可以退休了D、作为一个老师,你很有爱心答案:D。将实参42传递给函数形参变量age,之后进入多分支结构,依次判断,因为30<42<60,故
- java将动态图转换成静态图_如何用最简单的方法把静态图变成动图?
PEI Lobster
java将动态图转换成静态图
在今日头条浏览文章时,我们经常会看到有些作者在文章中插入了一些动态图片,不但美化了页面,而且起到了简明扼要的说明作用,让读者对文章内容加深了理解,也提高了文章的阅读量和点击量。这样的动态效果是如何制作的呢?主要有两个步骤:首先要制作出图片动态效果的视频,一般是MP4格式,第二步用格式工厂等文件格式转换软件,把MP4转换为gif动画格式,然后就可以把它插入到网页中。这其中的难点和重点就在于制作图片的
- Azure Delta Lake、Databricks和Event Hubs实现实时欺诈检测
weixin_30777913
azure云计算
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合AzureEventHubs/Kafka摄入实时数据,通过DeltaLake实现Exactly-Once语义,实时欺诈检测(流数据写入DeltaLake,批处理模型实时更新),以及具体实现的详细步骤和关键PySpark代码。完整实现代码需要根据具体数据格式和业务规则进行调整,建议通过DatabricksR
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 卷积神经网络Batch Normalization的作用
arron8899
cnnbatch人工智能
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于神经网络的每一层数据分布不同)。没有BN时,烤箱温度忽高忽低,导致有的层烤焦(梯度爆炸),有的层不熟(梯度消失)。BN的作用相当于给每一层装了一个自动温度调节器,实时将输入数据调整到标准温度(均值为0,方差为1),保证每层都能均匀受热,训练更稳定。2.让模型训练“少
- Bug:eventlet ImportError cannot import name ‘ALREADY HANDLED
uncle_ll
Bug合集
问题测试gunicorn不同work下的性能时候,在eventlet方式下报错误Error:classuri'eventlet'invalidornotfound:[Traceback(mostrecentcalllast):File"/app/venv/lib64/python3.6/site-packages/gunicorn/util.py",line99,inload_classmod=i
- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- Python语言程序设计 1
摸你就像摸自己
python
目录1Python基本语法元素1.1程序设计基本方法1.1.1计算机与程序设计1.1.2编译与解释1.1.3程序的基本编写方法—IPO1.1.4计算机编程1.2Python开发环境配置1.2.1Python语言概述1.2.2Python程序的编写与运行例1:计算圆面积例2:绘制同切圆例3:绘制五角星1.3实例一:温度转换1.3.1问题分析:实例编写:1.4Python程序语法元素分析1.4.1格
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 【华为OD】游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。
测试_老姜
华为odpython
游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下匹配出的各组实力差距的总和最小。输入描述第一行两个整数,n,d。队伍个数n。允许的最大实力差距d。2<=n<=500<=d<=100第二行,n个整数,表示队伍的实力值,以空格
- 头条原创文章一键转换剪映生成视频
Mr数据杨
Python视频剪辑pythonmoveipy图文转视频西瓜视频剪映
随着技术的进步,平台逐渐为创作者提供了更多便捷的功能来增强内容的表达效果。近期,某平台新增了一个实用功能,允许用户将自己发布的文章通过后台的视频生成工具一键转换为短视频。然而,这一功能的使用存在一些限制,比如仅支持原创文章,并且生成的视频只能在该平台发布,暂时无法同步至其他社交平台。尽管如此,通过对生成视频的观察与分析,可以发现其处理方式与剪映等主流视频编辑软件有相似之处,这为进一步扩展视频的应用
- C语言程序配置搭建提纲
oicola
c语言开发语言编辑器c++
C、C++语言程序配置搭建提纲一、环境准备安装编译器选择合适的C语言编译器,如MinGW(包含GCC)或MSVC。从官方渠道下载并安装,确保安装过程中选择正确的组件(如MinGW的GCC或MSVC的“桌面开发withC++”工作负载)。安装代码编辑器推荐使用VisualStudioCode(VSCode),从官网下载并安装。配置环境变量将编译器的路径添加到系统的环境变量PATH中。对于MinGW,
- JVM常用概念之编译器黑洞
剑海风云
JDK(JavaDevelopmentKit)jvm编译器编译器黑洞
问题JMH如何避免微小基准测试中的不会运行的代码的消除工作?是否有隐式或显式编译器支持?基础知识优化编译器擅长优化简单的东西。例如,如果存在任何人都无法观察到的计算,则可以将其视为“不会运行的代码”并将其删除。这通常是一件好事,直到你运行基准测试。在那里,你想要计算,但你不需要结果。本质上,你观察基准测试所占用的“资源”,但没有简单的方法可以与编译器争论这一点。比如下面的测试用例,该方法中只涉及到
- Ret2syscall(超详细)
LuoYaFu
服务器算法运维
什么是系统调用?系统调用(SystemCall)是操作系统提供给应用程序的接口,允许应用程序请求操作系统内核执行某些特权操作。由于操作系统内核运行在更高的特权级别(如x86架构中的内核态),普通应用程序(运行在用户态)无法直接访问硬件资源或执行某些敏感操作(如文件读写、进程管理、网络通信等)。因此,应用程序需要通过系统调用来请求内核完成这些操作。我用自己的话说就是设置对应寄存器的值,达到调用系统函
- Angular 编译前的脚本执行
t0_54manong
编程问题解决手册angular.js前端javascript个人开发
在使用Angular开发项目时,有时候我们需要在每次编译之前执行特定的脚本或JavaScript函数。这在开发环境中非常有用,比如运行某些预处理、清理或其他自定义逻辑。今天我们将探讨如何在Angularv17结合esbuild实现这个功能。问题背景假设你正在使用Angularv17进行开发,并且已经配置了esbuild作为构建工具。现在你需要在每次Angular编译之前(特别是使用ngwatch时
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【从零开始学习计算机科学】软件测试(三)回归测试、系统测试 与 验收测试
贫苦游商
学习软件测试回归测试系统测试验收测试测试工具ab测试
【从零开始学习计算机科学】软件测试(三)回归测试、系统测试与验收测试回归测试回归测试的组织和实施回归测试集回归测试的范围自动回归测试框架自动回归测试框架的技术特点回归测试克服的几个问题回归测试人员应掌握的测试手段回归用例库的维护系统测试系统测试的组织和分工系统测试的过程系统测试方法用户界面测试用户界面测试-符合标准和规范用户界面测试-一致性用户界面测试-直观性用户界面测试-灵活性用户界面测试-舒适
- 华为OD机试 - 最佳对手( Python)
AsiaFT.
Py华为OD机试AB卷pythonod
题目描述游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下匹配出的各组实力差距的总和最小。输入描述第一行,n,d。队伍个数n。允许的最大实力差距d。2<=n<=500<=d<=100第二行,n个队伍的实力值空格分割。0<=各
- 零基础上手Python数据分析 (6):Python 异常处理,告别程序崩溃的烦恼!
kakaZhui
python数据分析数据库excel数据挖掘
回顾一下,前几篇博客我们学习了Python的基本语法、数据结构和文件操作。现在,我们已经掌握了Python编程的基础知识,可以开始编写更复杂的数据分析代码了。但是,在实际的数据分析工作中,程序并非总能一帆风顺地运行,总会遇到各种意外情况,例如:文件找不到:程序尝试读取一个不存在的数据文件。数据格式错误:数据文件中包含非预期的格式,例如本应是数字的列包含了文本。网络连接中断:程序尝试从网络获取数据,
- 2023华为OD机试真题-最佳对手(JAVA、Python、C++)
huaweiod123
华为OD机试真题2023javac++算法华为python
题目描述:游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实例相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下,匹配出的各组实力差距的总和最小。输入描述:第一行,n,d。队伍个数n。允许的最大实力差距d。(2<=n<=50,0<=d<=100)。第二行,n个队伍的实力值,空
- 【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。
985小水博一枚呀
深度学习人工智能
【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。文章目录【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。1.滑坡灾害早期隐患的概念与特征概念主要特征2.通过光学
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 使用PyInstaller打包Python程序时,如何避免生成的可执行文件(exe)过大的解决方法
ta叫我小白
pythonpython开发语言pyinstaller可执行文件
使用PyInstaller打包出来的exe等可执行文件过大(比如我的一个小项目,打包之后超过了600M),大概率是使用的python解释器(PythonInterpreter)中安装了许多当前项目没有使用的库。解决方法:打包时,最好为这个项目创建一个独立的虚拟解释器环境,如下图:指定了新的虚拟环境之后,你需要在新环境中安装你所需要的依赖库。在py文件中选择安装即可,此时依赖库会安装到新的环境中。切
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理