分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
libfacedetection是于仕琪老师放到GitHub上的二进制库,没有源码,它的License是MIT,可以商用。目前只提供了windows 32和64位的release动态库,主页为https://github.com/ShiqiYu/libfacedetection,采用的算法好像是Multi-BlockLBP,提供了四套接口,分别为frontal、frontal_surveillance、multiview、multiview_reinforce,其中multiview_reinforce效果最好,速度比其它稍慢,四套接口的参数类型完全一致,可以根据需要对参数min_neighbors和min_object_width进行调整。
新建一个控制台工程,用来测试libfacedetection,测试代码如下:
#include #include #include #include #include int main(){ std::vector<std::string> images{ "1.jpg", "2.jpg", "3.jpg", "4.jpeg", "5.jpeg", "6.jpg", "7.jpg", "8.jpg", "9.jpg", "10.jpg", "11.jpeg", "12.jpg", "13.jpeg", "14.jpg", "15.jpeg", "16.jpg", "17.jpg", "18.jpg", "19.jpg", "20.jpg" }; std::vector<int> count_faces{1, 2, 6, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 8, 2}; std::string path_images{ "E:/GitCode/Face_Test/testdata/" }; if (images.size() != count_faces.size()) { fprintf(stderr, "their size that images and count_faces are mismatch\n"); return -1; } typedef int* (*detect_face)(unsigned char * gray_image_data, int width, int height, int step, float scale, int min_neighbors, int min_object_width, int max_object_width); detect_face detect_methods[]{ &facedetect_frontal, &facedetect_multiview, &facedetect_multiview_reinforce, &facedetect_frontal_surveillance }; std::string detect_type[4] {"face frontal", "face multiview", "face multiview reinforce", "face surveillance"}; for (int method = 0; method < 4; method++) { detect_face detect = detect_methods[method]; fprintf(stderr, "detect type: %s\n", detect_type[method].c_str()); for (int i = 0; i < images.size(); i++) { cv::Mat src_ = cv::imread(path_images + images[i], 1); if (src_.empty()) { fprintf(stderr, "read image error: %s\n", images[i].c_str()); return -1; } cv::Mat src; cv::cvtColor(src_, src, CV_BGR2GRAY); int* results = nullptr; results = detect(src.data, src.cols, src.rows, src.step, 1.2f, 2, 10, 0); std::string save_result = path_images + std::to_string(method) + "_" + images[i]; //fprintf(stderr, "save result: %s\n", save_result.c_str()); for (int faces = 0; faces < (results ? *results : 0); faces++) { short* p = ((short*)(results + 1)) + 6 * faces; int x = p[0]; int y = p[1]; int w = p[2]; int h = p[3]; int neighbors = p[4]; int angle = p[5]; fprintf(stderr, "image_name: %s, faces_num: %d, face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%d\n", images[i].c_str(), *results, x, y, w, h, neighbors, angle); cv::rectangle(src_, cv::Rect(x, y, w, h), cv::Scalar(0, 255, 0), 2); } cv::imwrite(save_result, src_); } } int width = 200; int height = 200; cv::Mat dst(height * 5, width * 4, CV_8UC3); for (int i = 0; i < images.size(); i++) { std::string input_image = path_images + "2_" + images[i]; cv::Mat src = cv::imread(input_image, 1); if (src.empty()) { fprintf(stderr, "read image error: %s\n", images[i].c_str()); return -1; } cv::resize(src, src, cv::Size(width, height), 0, 0, 4); int x = (i * width) % (width * 4); int y = (i / 4) * height; cv::Mat part = dst(cv::Rect(x, y, width, height)); src.copyTo(part); } std::string output_image = path_images + "result.png"; cv::imwrite(output_image, dst); fprintf(stderr, "ok\n"); return 0;}
从网上找了20张图像,验证此库的检测率,下图是采用multiview_reinforce接口的检测结果:
GitHub:https://github.com/fengbingchun/Face_Test