- TidyBot++:用于机器人学习开源的完整移动机械手
三谷秋水
计算机视觉智能体人工智能机器人开源人工智能机器学习深度学习
24年12月来自普林斯顿、斯坦福和dexterity.ai的论文“TidyBot++:AnOpen-SourceHolonomicMobileManipulatorforRobotLearning”。要充分利用模仿学习在移动机械操作方面的最新进展,需要收集大量人工引导的演示。本文提出一种开源设计,用于设计一种廉价、坚固、灵活的移动机械手,该机械手可支撑任意臂,从而实现各种现实世界的家用移动机械操作
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- Julia语言的学习路线
樟松
包罗万象golang开发语言后端
Julia语言学习路线指南引言在编程语言层出不穷的今天,Julia作为一门新兴的高级编程语言,以其出色的性能和易用性逐渐获得了越来越多的关注。特别是在科学计算、数据分析和机器学习等领域,Julia的表现十分出色,成为研究人员和开发者的热门选择。本文将为希望学习Julia语言的读者提供一条详细的学习路线,包括基础知识、工具、库、项目和实践经验等,帮助大家有效地掌握这门语言。一、了解Julia语言在开
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- DeepSeek:技术创作者的内容革命,从代码到爆文的AI全栈攻略
不想加班的码小牛
人工智能aichatgpt
一、为什么技术创作者需要关注DeepSeek?作为CSDN的资深用户,你是否经历过这些痛点?选题焦虑:技术热点日新月异,如何抓住「大模型优化」或「量子计算落地」等前沿方向?写作卡顿:明明代码跑通了,却在技术原理描述环节反复修改效率瓶颈:既要写技术文档又要运营专栏,时间永远不够用DeepSeek的多模态理解能力(支持代码+自然语言混合输入)和领域自适应特性(自动识别技术文档/教程/测评等文体),让它
- TPAMI 2024 | 学习人类教育智慧:以学生为中心的知识蒸馏方法
小白学视觉
论文解读IEEETPAMI知识蒸馏TPAMI论文解读深度学习
题目:LearningFromHumanEducationalWisdom:AStudent-CenteredKnowledgeDistillationMethod学习人类教育智慧:以学生为中心的知识蒸馏方法作者:S.Yang;J.Yang;M.Zhou;Z.Huang;W.-S.Zheng;X.Yang;J.Ren摘要现有的知识蒸馏研究通常侧重于以教师为中心的方法,其中教师网络根据自身标准进行训
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- Mac下安装Zed以及Zed对MCP(模型上下文协议)的支持
skywalk8163
人工智能macos前端服务器
Zed是当前新流行的一种编辑器,支持MCP(模型上下文协议)Mac下安装Zed比较简单,直接有安装包,在这里:brewinstall--caskzedMacMonterey下是可以安装上的,亲测有效。配置使用Ctrl+Shift+P调出AI,然后设置使用的模型可以使用deepseek,但是没有找到使用自建服务器的设置方法,有些遗憾。附加学习关于Zed里面的MCP部分,手册:ModelContext
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- rk3588部署deepseek
随便取个六字
rk3588
也是终于部署上了,过程不难,下面简单叙述:111我的方法肯定有很多漏洞,但是我其他手段要么加载不出来,要么网络超时,呜呜呜,大伙如果有别的好方法,请求各位指导我,不甚感激!!!!我们使用docker代替安装(要下东西的,等待一下~)#安装Dockersudoaptinstalldocker.io#拉取Ollama镜像sudodockerpullollama/ollama#启动容器(数据持久化到~/
- Deepseek-R1大模型微调实战技术深度解析
大势下的牛马
搭建本地gptDeepseek大模型评测微调
一、Deepseek-R1架构特性与微调适配性分析1.1核心架构创新对微调的影响Deepseek-R1基于Deepseek-V3-Base架构,通过MoE(Mixture-of-Experts)与MLA(Multi-HeadLatentAttention)的协同设计,实现了参数规模与计算效率的平衡。其6710亿参数总量中,每个token仅激活37B参数的机制,使得微调过程中可针对不同任务动态调整专
- 【深度学习与大模型基础】第3章-张量
lynn-66
深度学习与大模型基础深度学习人工智能
大家好!今天我们来聊聊张量(Tensor)。别被这个词吓到,其实它没那么复杂。什么是张量?简单来说,张量就是一个多维数组。你可以把它看作是一个装数据的容器,数据的维度可以是一维、二维,甚至更高。标量(0维张量):就是一个单独的数字,比如3。向量(1维张量):一串数字,比如[1,2,3]。矩阵(2维张量):一个表格,比如[[1,2],[3,4]]。更高维张量:比如[[[1,2],[3,4]],[[5
- 基于热力梯度的线圈设计用来更替新型的储能方式
热爱电气
数学建模
摘要研究背景:传统电磁储能技术受限于较低的能量密度(约1-5Wh/kg)和充放电速度。热力梯度储能技术通过调控温度场实现多模式能量转换,其潜力能量密度可达100Wh/kg以上。创新点:1.提出三层异质线圈结构(铜基主储层+Bi₂Te₃热电转换层+GdFeO₃磁热调谐层),实现温度梯度与磁场的协同调控。2.开发动态热-电-磁耦合模型,结合有限元分析(COMSOL)与机器学习算法(遗传算法优化参数)。
- 《今日AI-人工智能-编程日报》-源于2025年3月11日
小亦编辑部
每日AI-人工智能-编程日报人工智能
1.AI行业动态1.1Manus通用智能体初成型,开启AIAgent新时代中泰证券发布研报称,首款通用型AI智能体Manus已问世,能够将复杂任务拆解为可执行的步骤链,并在虚拟环境中灵活调用工具,标志着AI从“Reasoner”走向“Agent”阶段。Manus的成功引发了开源复现潮,DeepSeek模型已被整合到OWL项目中,并在GAIA基准测试中表现接近Manus。1.2DeepSeek-R2
- 【机器学习】skit-learn中LSI模型的实现
一穷二白到年薪百万
机器学习pythonsklearn
参考文献[1]sklearn_api.lsimodel–ScikitlearnwrapperforLatentSemanticIndexing[2]Pythonmodels.LsiModel方法代码示例
- OpenCV 深度学习模块 cv2.dnn 与其他深度学习框架的优缺点对比及适用场景
白.夜
深度学习opencv
OpenCV提供了一个深度学习模块cv2.dnn,让开发者能够在计算机视觉项目中轻松加载和推理深度学习模型。相比于TensorFlow、PyTorch等其他深度学习框架,cv2.dnn有其独特的优点与缺点,适用于不同的应用场景。在这篇文章中,我们将详细分析cv2.dnn的优缺点,并讨论它的适用场景。一、cv2.dnn的优点1.简单易用cv2.dnn提供了一个相对简单且易于使用的接口,适合已经在使用
- 深度学习中的 blob 格式:与普通 image 的区别及转换原因
白.夜
深度学习人工智能
在深度学习模型推理过程中,我们经常会用到cv2.dnn.blobFromImage函数将普通图像转换为blob格式。那么,blob格式到底是什么?它和普通image有什么区别?为什么在模型推理中需要这种转换?本文将用通俗的语言为你解答这些问题。1.什么是blob格式?blob是OpenCV中用于深度学习模型输入的一种特殊数据格式,全称为BinaryLargeObject。它本质上是一个多维数组(通
- 第三十个问题-讲讲Agent、MCP、OpenAI Responses API
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
1.Agent(智能体)136定义与核心功能Agent是什么:能够自主执行复杂任务的智能实体,通常基于大语言模型(LLM)构建,配备指令和工具,可独立完成多步骤任务(如网络搜索、文件处理、自动化操作等)18。应用场景:客服自动化、法律文档检索、代码审查、数据输入、股票分析等36。OpenAI的Agent生态:DeepResearch:自动生成带引用的研究报告。Operator:通过控制浏览器光标执
- DeepSeek多语言智能创作引擎解析
智能计算研究中心
其他
内容概要在人工智能技术加速演进的背景下,DeepSeek系列产品通过混合专家架构(MoE)与670亿参数的协同设计,构建了多模态智能创作引擎的核心竞争力。该系统依托动态路由机制,将视觉语言理解模块与多语言处理单元进行深度耦合,使模型在解析图文混合信息时展现出超越单一模态的认知能力。尤为突出的是,其分层参数激活策略将推理成本降低至传统密集模型的38%,同时维持了95%以上的任务完成精度。行业分析机构
- DeepSeek:中国大模型 “破壁者” 引发的四大产业地震
赵同学爱学习
人工智能chatgptDeepSeek语言模型大模型开源
导语:当全球AI产业还在为GPT-4的1750亿参数惊叹时,中国团队DeepSeek以颠覆性创新撕开了大模型领域的“铁幕”。这款首个引发国际学术界集体关注的中文大模型,正从技术底层重构产业规则,其冲击波已蔓延至硬件、软件、商业模式的每个角落。一、算力霸权瓦解:低成本训推技术改写游戏规则1.1训练成本“悬崖式下降”DeepSeek通过混合专家架构(MoE)动态路由算法,在同等效果下将模型激活参数压缩
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- Java:AI 浪潮中的隐形支柱 —— 探秘 Java 在人工智能领域的独特地位
琢磨先生David
人工智能
引言在人工智能技术席卷全球的今天,当人们谈论AI开发时,Python、R语言、C++等工具总是最先被提及。然而在这个充满创新的领域,有一个"老兵"正悄然发挥着不可替代的作用——自1995年诞生至今的Java语言,凭借其独特的工程化基因,正在构建起AI世界的底层基础设施。本文将揭示Java如何在大数据、机器学习、企业级AI系统等领域持续创造价值。一、Java的AI基因解码跨平台优势的现代意义"一次编
- 无需月费,完全本地运行!开源神器Local Deep Research解锁AI研究新姿势
遇见小码
AI棱镜实验室人工智能开源github
在AI技术日新月异的今天,动辄数百美元的订阅费和高性能硬件需求,让许多开发者和小团队对前沿研究工具望而却步。然而,近期一款名为LocalDeepResearch的开源项目横空出世,凭借完全免费、本地化运行、高度可定制的特性,迅速成为技术社区的热议焦点。它不仅打破了传统AI研究工具的高昂门槛,更让每个人都能轻松拥有堪比专业团队的研究能力!一、LocalDeepResearch是什么?LocalDee
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f