GPT2中文文本生成对话应用尝试

  

目录

1、数据清洗

 2、模型训练

3、模型推理

4、效果展示


        文本对话是一个很复杂的任务,难度比较大。按照对话文本产生的方式可以分为检索式和生成式;按照技术实现的方式可以分为端到端和pipeline的方式。为了保证对话的多样性和丰富性,以及减少流程的繁琐例如构建对话管理、对话理解等模块,我们基于GPT2模型以及GPT2-chat项目,在保险领域进行了中文文本生成对话应用,尝试。总而言之,本文并不是一个创新性的内容,更多的是一种现有技术和模型在业务中的尝试和效果验证。

         背景前提已经为客户搭建了一套基于FAQ的问答对话系统,效果也还可以。为了提供一个不一样的体验,保证对话的多样性和丰富性,采用GPT2模型仿照GPT2-chat项目的整体思路对保险领域下对话生成进行了一个应用尝试。

1、数据清洗

数据获取和清洗,这个是最为关键的一步,拿到300万条对话约30万通的对话记录如下:

GPT2中文文本生成对话应用尝试_第1张图片

清除噪声、微信表情包、特殊字符等等以及无意义的回复等,把同一个坐席连续说的话用分号拼接成一句话,最后的数据格式如下:

GPT2中文文本生成对话应用尝试_第2张图片

注意训练模型的时候分为微调和预训练,那数据格式也是不一样的,预训练的数据就是其中的每一句话:

GPT2中文文本生成对话应用尝试_第3张图片

 2、模型训练

模型训练分为预训练和微调;

预训练的时候模型的输入:text

微调的时候模型的输入:text_客户[SEP]text_坐席[SEP]text_客户[SEP]text_坐席

读取数据做词典映射的时候,代码如下:

from torch.utils.data import Dataset
import torch
import os
from tqdm import tqdm

class MyDataset(Dataset):
    """
    """
    def __init__(self, file_path, args,logger):
        self.file_path = file_path
        self.train_type = args.train_type
        self.tokenizer = args.tokenizer
        self.max_len = args.max_len
        self.logger = logger
        self.input_list = self.texts_tokenize()


    def texts_tokenize(self):
        cache_path = self.file_path.replace('.txt','_cache.bin')
        if os.path.exists(cache_path):
            self.logger.info('load datas from cache_path:%s'%(cache_path))
            datas = torch.load(cache_path)
        else:
            self.logger.info('cache_path not exists process datas')
            if self.train_type == 'pretrain':
                datas = self.process_pretrain_data()
            else:
                datas = self.process_finetune_data()
            torch.save(datas, cache_path)
        return datas

    def process_pretrain_data(self):
        with open(self.file_path,'r',encoding='utf-8') as f:
            lines = f.readlines()
        datas = []
        for line in tqdm(lines,desc='process_pretrain_data'):
            line = line.strip('\n').strip('\r\n')
            if len(line) < self.max_len:
                input_ids = self.tokenizer(line)['input_ids']
                attention_mask = self.tokenizer(line)['attention_mask']

                input_ids = torch.tensor(input_ids,dtype=torch.long)
                attention_mask = torch.tensor(attention_mask, dtype=torch.long)

                labels = [id if id != 0 else -100 for id in input_ids]
                labels = torch.tensor(labels, dtype=torch.long)

                datas.append((input_ids, attention_mask, labels))
        return datas

    def process_finetune_data(self):
        with open(self.file_path, 'r', encoding='utf-8') as f:
            lines = f.readlines()
        datas = []
        s = ""
        for line in tqdm(lines,desc='process_finetune_data'):
            if line != '\n' and line != '\r\n':
                line = line.strip('\n').strip('\r\n').strip('坐席:').strip('客户:')
                s += line + '[SEP]'
            else:
                s = s.strip('[SEP]')[0:self.max_len]
                if len(s) <= self.max_len:
                    input_ids = self.tokenizer(s)['input_ids']
                    attention_mask = self.tokenizer(s)['attention_mask']

                    input_ids = torch.tensor(input_ids, dtype=torch.long)
                    attention_mask = torch.tensor(attention_mask, dtype=torch.long)
                    labels = [ id if id !=0 else -100  for id in input_ids]
                    labels = torch.tensor(labels, dtype=torch.long)
                    datas.append((input_ids,attention_mask, labels))
                s = ""
        return datas

    def __getitem__(self, index):
        input_ids = self.input_list[index][0]
        attention_mask = self.input_list[index][1]
        labels = self.input_list[index][2]
        return input_ids, attention_mask, labels



    def __len__(self):
        return len(self.input_list)

padding的方式

模型训练的时候使用GPU和采用batch的方式,需要特别注意的是——padding的方式

这里的padding的方式和Bert模型是不同的,bert的padding是在句子后面,而GPT2类生成模型必须实在句子前面,不然padding放在句子后面,padding会对生成的结果有影响,导致inference的时候batch内最长句子不同,padding的长度不同,相同的句子最后的结果也不一致

一个batch的数据

[
"要3天后啊[SEP]对的",
"你[SEP]您好"
]

那么GPT2的padding方式如下:

[
"要3天后啊[SEP]对的",
"[PAD][PAD][PAD][PAD]你[SEP]您好"
]

代码实现(前向后向padding都支持):

def pad_sequence(sequences, padding_value=0,padding='pre'):
    max_len = max([s.size(0) for s in sequences])

    max_size = sequences[0].size()
    trailing_dims = max_size[1:]

    out_dims = (len(sequences), max_len) + trailing_dims

    out_tensor = sequences[0].new_full(out_dims, padding_value)

    for i, tensor in enumerate(sequences):
        length = tensor.size(0)
        if padding == 'pre':
            out_tensor[i, -length:, ...] = tensor
        else:
            # use index notation to prevent duplicate references to the tensor
            out_tensor[i, 0:length, ...] = tensor

    return out_tensor


def collate_fn(batch):
    input_ids, attention_mask,labels = zip(*batch)
    input_ids = pad_sequence(input_ids, padding_value=0,padding='pre')
    attention_mask = pad_sequence(attention_mask,  padding_value=0, padding='pre')
    labels = pad_sequence(labels, padding_value=-100, padding='pre')

    return input_ids, attention_mask, labels

由于GPT2没有开源的中文权重,因此我们需要自己重新预训练一个中文的权重;这里词典和权重以及tokenizer都是直接使用Bert的,而模型结构使用GPT2。训练代码如下:

import argparse
import torch
import torch.nn.functional as F
import logging
from datetime import datetime
import os
from torch.utils.data import DataLoader
import transformers
import pickle
from transformers import BertTokenizerFast, GPT2LMHeadModel, GPT2Config
import torch.nn.utils.rnn as rnn_utils
from data_reader.mydataset import MyDataset
from torch.optim import AdamW
from tools.progressbar import ProgressBar
torch.backends.cudnn.enable =True

def set_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--train_type', default='finetune_std', type=str, required=False, help='设置使用哪些显卡')
    # parser.add_argument('--train_type', default='pretrain', type=str, required=False, help='设置使用哪些显卡')


    parser.add_argument('--device', default='0', type=str, required=False, help='设置使用哪些显卡')
    parser.add_argument('--vocab_path', default='vocab/vocab.txt', type=str, required=False,
                        help='词表路径')
    parser.add_argument('--model_config', default='small_config/config.json', type=str, required=False,
                        help='设置模型参数')
    parser.add_argument('--data_path', default='data/', type=str, required=False, help='训练集路径')
    parser.add_argument('--max_len', default=512, type=int, required=False, help='训练时,输入数据的最大长度')

    parser.add_argument('--log_path', default='logs/', type=str, required=False, help='训练日志存放位置')
    parser.add_argument('--log', default=True, help="是否记录日志")
    parser.add_argument('--ignore_index', default=-100,  type=int, required=False, help='对于ignore_index的label token不计算梯度')
    # parser.add_argument('--input_len', default=200, type=int, required=False, help='输入的长度')
    parser.add_argument('--epochs', default=100, type=int, required=False, help='训练的最大轮次')
    parser.add_argument('--batch_size', default= 8, type=int, required=False, help='训练的batch size')
    parser.add_argument('--lr', default=2.6e-5, type=float, required=False, help='学习率')
    parser.add_argument('--eps', default=1.0e-09, type=float, required=False, help='衰减率')
    parser.add_argument('--log_step', default=1000, type=int, required=False, help='多少步汇报一次loss')
    parser.add_argument('--gradient_accumulation_steps', default=8, type=int, required=False, help='梯度积累')
    parser.add_argument('--max_grad_norm', default=2.0, type=float, required=False)
    parser.add_argument('--save_model_path', default='model_output/', type=str, required=False,
                        help='模型输出路径')
    # parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的')
    parser.add_argument('--num_workers', type=int, default=0, help="dataloader加载数据时使用的线程数量")
    parser.add_argument('--patience', type=int, default=0, help="用于early stopping,设为0时,不进行early stopping.early stop得到的模型的生成效果不一定会更好。")
    parser.add_argument('--warmup_steps', type=int, default=4000, help='warm up步数')
    # parser.add_argument('--label_smoothing', default=True, action='store_true', help='是否进行标签平滑')
    args = parser.parse_args()
    return args


def create_logger(args):
    """
    将日志输出到日志文件和控制台
    """
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.INFO)

    # formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
    formatter = logging.Formatter('%(asctime)s %(filename)s [line:%(lineno)d] %(levelname)s %(message)s')

    # 创建一个handler,用于写入日志文件
    file_handler = logging.FileHandler(filename=args.log_path)
    file_handler.setFormatter(formatter)
    file_handler.setLevel(logging.INFO)
    logger.addHandler(file_handler)

    # 创建一个handler,用于将日志输出到控制台
    console = logging.StreamHandler()
    console.setLevel(logging.DEBUG)
    console.setFormatter(formatter)
    logger.addHandler(console)

    return logger


def pad_sequence(sequences, padding_value=0,padding='pre'):
    max_len = max([s.size(0) for s in sequences])

    max_size = sequences[0].size()
    trailing_dims = max_size[1:]

    out_dims = (len(sequences), max_len) + trailing_dims

    out_tensor = sequences[0].new_full(out_dims, padding_value)

    for i, tensor in enumerate(sequences):
        length = tensor.size(0)
        if padding == 'pre':
            out_tensor[i, -length:, ...] = tensor
        else:
            # use index notation to prevent duplicate references to the tensor
            out_tensor[i, 0:length, ...] = tensor

    return out_tensor






def collate_fn(batch):
    input_ids, attention_mask,labels = zip(*batch)
    input_ids = pad_sequence(input_ids, padding_value=0,padding='pre')
    attention_mask = pad_sequence(attention_mask,  padding_value=0, padding='pre')
    labels = pad_sequence(labels, padding_value=-100, padding='pre')

    return input_ids, attention_mask, labels


def train_epoch(model, train_dataloader, optimizer, scheduler, logger, epoch, args):
    all_correct = 0
    all_total = 0

    model.train()
    device = args.device
    # pad_id = args.pad_id
    # sep_id = args.sep_id
    ignore_index = args.ignore_index
    epoch_start_time = datetime.now()
    total_loss = 0  # 记录下整个epoch的loss的总和

    # epoch_correct_num:每个epoch中,output预测正确的word的数量
    # epoch_total_num: 每个epoch中,output预测的word的总数量
    epoch_correct_num, epoch_total_num = 0, 0
    pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
    for batch_idx, (input_ids, attention_mask, labels) in enumerate(train_dataloader):
        # 捕获cuda out of memory exception
        try:
            input_ids = input_ids.to(device)
            attention_mask = attention_mask.to(device)
            labels = labels.to(device)

            outputs = model.forward(input_ids, attention_mask=attention_mask, labels=labels)
            logits = outputs.logits
            loss = outputs.loss
            loss = loss.mean()

            # 统计该batch的预测token的正确数与总数
            batch_correct_num, batch_total_num = calculate_acc(logits, labels, ignore_index=ignore_index)
            # 统计该epoch的预测token的正确数与总数
            epoch_correct_num += batch_correct_num
            epoch_total_num += batch_total_num
            # 计算该batch的accuracy
            batch_acc = batch_correct_num / batch_total_num

            total_loss += loss.item()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            loss.backward()

            all_total += batch_total_num
            all_correct += batch_correct_num


            # 梯度裁剪
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            #梯度累加——进行一定step的梯度累计之后,更新参数
            if (batch_idx + 1) % args.gradient_accumulation_steps == 0:
                # 更新参数
                optimizer.step()
                # 更新学习率
                scheduler.step()
                # 清空梯度信息
                optimizer.zero_grad()

            if (batch_idx + 1) % args.log_step == 0:
                logger.info(
                    "batch {} of epoch {}, loss {}, batch_acc {}, lr {}".format(
                        batch_idx + 1, epoch + 1, loss.item() * args.gradient_accumulation_steps, batch_acc, scheduler.get_lr()))
            pbar(batch_idx, {'loss': loss.item()})

            del input_ids, outputs

        except RuntimeError as exception:
            if "out of memory" in str(exception):
                logger.info("WARNING: ran out of memory")
                if hasattr(torch.cuda, 'empty_cache'):
                    torch.cuda.empty_cache()
            else:
                print(input_ids.shape)
                print(labels.shape)

                logger.info(str(exception))
                raise exception

    # 记录当前epoch的平均loss与accuracy
    epoch_mean_loss = total_loss / len(train_dataloader)
    epoch_mean_acc = epoch_correct_num / epoch_total_num
    # writer.add_scalar('train_loss', epoch_mean_loss, global_step=len(train_dataloader) * args.epochs)
    # writer.add_scalar('train_acc', epoch_mean_acc,global_step=len(train_dataloader) * args.epochs)

    logger.info("epoch {}: train_loss {}, train_acc {}".format(epoch + 1, epoch_mean_loss, epoch_mean_acc))

    # # save model
    # if epoch % 10 == 0:
    #     logger.info('saving model for epoch {}'.format(epoch + 1))
    #     model_path = join(args.save_model_path, 'epoch{}'.format(epoch + 1))
    #     if not os.path.exists(model_path):
    #         os.mkdir(model_path)
    #     model_to_save = model.module if hasattr(model, 'module') else model
    #     model_to_save.save_pretrained(model_path)
    # logger.info('epoch {} finished'.format(epoch + 1))

    epoch_finish_time = datetime.now()
    logger.info('time for one epoch: {}'.format(epoch_finish_time - epoch_start_time))

    return epoch_mean_loss,epoch_mean_acc


def validate_epoch(model, validate_dataloader, logger, epoch, args):
    logger.info("start validating")
    model.eval()
    all_correct = 0
    all_total = 0

    device = args.device
    # pad_id = args.pad_id
    # sep_id = args.sep_id
    ignore_index = args.ignore_index
    epoch_start_time = datetime.now()
    total_loss = 0  # 记录下整个epoch的loss的总和

    # epoch_correct_num:每个epoch中,output预测正确的word的数量
    # epoch_total_num: 每个epoch中,output预测的word的总数量
    epoch_correct_num, epoch_total_num = 0, 0
    pbar = ProgressBar(n_total=len(validate_dataloader), desc='Valing')
    for batch_idx, (input_ids, attention_mask, labels) in enumerate(validate_dataloader):
        # 捕获cuda out of memory exception
        try:
            input_ids = input_ids.to(device)
            attention_mask = attention_mask.to(device)
            labels = labels.to(device)
            outputs = model.forward(input_ids, attention_mask=attention_mask, labels=labels)
            logits = outputs.logits
            loss = outputs.loss
            loss = loss.mean()

            # 统计该batch的预测token的正确数与总数
            batch_correct_num, batch_total_num = calculate_acc(logits, labels, ignore_index=ignore_index)
            # 统计该epoch的预测token的正确数与总数
            epoch_correct_num += batch_correct_num
            epoch_total_num += batch_total_num

            total_loss += loss.item()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            loss.backward()

            all_total += batch_total_num
            all_correct += batch_correct_num
            pbar(batch_idx,  {'loss': loss.item()})
            del input_ids, outputs

        except RuntimeError as exception:
            if "out of memory" in str(exception):
                logger.info("WARNING: ran out of memory")
                if hasattr(torch.cuda, 'empty_cache'):
                    torch.cuda.empty_cache()
            else:
                logger.info(str(exception))
                raise exception

    # 记录当前epoch的平均loss与accuracy
    epoch_mean_loss = total_loss / len(validate_dataloader)
    epoch_mean_acc = epoch_correct_num / epoch_total_num
    # writer.add_scalar('train_loss', epoch_mean_loss, global_step=len(train_dataloader) * args.epochs)
    # writer.add_scalar('train_acc', epoch_mean_acc,global_step=len(train_dataloader) * args.epochs)

    logger.info("epoch {}: val_loss {}, val_acc {}".format(epoch + 1, epoch_mean_loss, epoch_mean_acc))

    return epoch_mean_loss, epoch_mean_acc


def train(model, logger, train_dataset, validate_dataset, args):
    train_dataloader = DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn
    )
    validate_dataloader = DataLoader(validate_dataset, batch_size=args.batch_size, shuffle=True,
                                    collate_fn=collate_fn)


    t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.epochs
    optimizer = AdamW(model.parameters(), lr=args.lr, eps=args.eps)

    args.warmup_steps = max(len(train_dataloader)*0.1,args.warmup_steps)


    scheduler = transformers.get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )

    logger.info('starting training')

    # 用于记录每个epoch训练和验证的loss
    train_losses, validate_losses = [], []
    # 记录验证集的最小loss
    # best_val_acc = 0.506633
    best_val_acc = 0

    early_stop = 5
    no_improving = 0

    # 开始训练
    for epoch in range(args.epochs):
        # ========== train ========== #
        train_loss,train_acc = train_epoch(
            model=model, train_dataloader=train_dataloader,
            optimizer=optimizer, scheduler=scheduler,
            logger=logger, epoch=epoch, args=args)
        train_losses.append(train_loss)


        logger.info('saving train model for epoch {}'.format(epoch + 1))
        model_path = os.path.join(args.save_model_path,str(epoch))
        if not os.path.exists(model_path):
            os.mkdir(model_path)
        model_to_save = model.module if hasattr(model, 'module') else model
        model_to_save.save_pretrained(model_path)
        args.model_config.save_pretrained(model_path)


        # ========== validate ========== #
        validate_loss, val_acc = validate_epoch(
            model=model, validate_dataloader=validate_dataloader,
            logger=logger, epoch=epoch, args=args)


        validate_losses.append(validate_loss)

        # 保存当前困惑度最低的模型,困惑度低,模型的生成效果不一定会越好
        if best_val_acc < val_acc:
            logger.info('saving current best model for epoch {}'.format(epoch + 1))
            best_val_acc = val_acc
            model_path = os.path.join(args.save_model_path, "best_val")
            if not os.path.exists(model_path):
                os.mkdir(model_path)
            model_to_save = model.module if hasattr(model, 'module') else model
            model_to_save.save_pretrained(model_path)
            args.model_config.save_pretrained(model_path)
            no_improving = 0
        else:
            no_improving += 1


        logger.info('train_acc:%.6f  val_acc:%.6f best_val_acc:%.6f '%(train_acc, val_acc, best_val_acc))

    logger.info('training finished')
    logger.info("train_losses:{}".format(train_losses))
    logger.info("validate_losses:{}".format(validate_losses))



def calculate_acc(logit, labels, ignore_index=-100):
    logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
    labels = labels[..., 1:].contiguous().view(-1)

    _, logit = logit.max(dim=-1)  # 对于每条数据,返回最大的index
    # 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1
    non_pad_mask = labels.ne(ignore_index)
    n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()
    n_word = non_pad_mask.sum().item()
    return n_correct, n_word


def main():
    # 初始化参数
    args = set_args()
    timestr = datetime.now().strftime('%Y-%m-%d_%H')

    args.log_path = os.path.join(args.log_path, args.train_type)
    if not os.path.exists(args.log_path):
        os.makedirs(args.log_path)
    args.log_path = os.path.join(args.log_path, timestr+'.log')

    # 设置使用哪些显卡进行训练
    os.environ["CUDA_VISIBLE_DEVICES"] = args.device

    if args.batch_size < 2048 and args.warmup_steps <= 4000:
        print('[Warning] The warmup steps may be not enough.\n' \
              '(sz_b, warmup) = (2048, 4000) is the official setting.\n' \
              'Using smaller batch w/o longer warmup may cause ' \
              'the warmup stage ends with only little data trained.')

    # 创建日志对象
    logger = create_logger(args)
    # 当用户使用GPU,并且GPU可用时
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    args.device = device
    logger.info('using device:{}'.format(device))

    # # 初始化tokenizer
    # tokenizer = BertTokenizerFast(vocab_file=args.vocab_path, sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]")
    tokenizer = BertTokenizerFast.from_pretrained('./vocab')
    args.tokenizer = tokenizer
    args.sep_id = tokenizer.sep_token_id
    args.pad_id = tokenizer.pad_token_id
    args.cls_id = tokenizer.cls_token_id

    if args.train_type != "pretrain":
        args.batch_size = args.batch_size//2

    logger.info('args.batch_size:%d'%args.batch_size)

    # 创建模型的输出目录
    if args.train_type == "pretrain":
        args.save_model_path = os.path.join(args.save_model_path, 'pretrain_6_layers')
    elif args.train_type == "finetune_std":
        args.save_model_path = os.path.join(args.save_model_path, 'finetune_std_final')
    else:#mmi模型
        args.save_model_path = os.path.join(args.save_model_path, 'finetune_mmi')
    if not os.path.exists(args.save_model_path):
        os.makedirs(args.save_model_path)

    logger.info('save_model_path: {}'.format(args.save_model_path))

    model_config = GPT2Config.from_json_file(args.model_config)
    args.model_config = model_config

    # 创建模型
    #从0预训练
    if args.train_type == "pretrain":
        # 从0开始预训练
        model = GPT2LMHeadModel(config=model_config)
        # #继续预训练
        # model = GPT2LMHeadModel.from_pretrained('./model_output/pretrain/')
    #领域语料预训练后,微调
    else:#finetune
        # model = GPT2LMHeadModel.from_pretrained('./model_output/pretrain/')
        # model = GPT2LMHeadModel.from_pretrained('./model_output/pretrain_small/')
        # model = GPT2LMHeadModel.from_pretrained('./model_output/pretrain_6_layers/')
        model = GPT2LMHeadModel.from_pretrained('./model_output/finetune_std_padding_left_6_layers_biggest_data/')

    model = model.to(device)
    logger.info('model config:\n{}'.format(model.config.to_json_string()))
    assert model.config.vocab_size == tokenizer.vocab_size

    # 计算模型参数数量
    num_parameters = 0
    parameters = model.parameters()
    for parameter in parameters:
        num_parameters += parameter.numel()
    logger.info('number of model parameters: {}'.format(num_parameters))



    # 加载训练集和验证集
    # ========= Loading Dataset ========= #
    if args.train_type == "pretrain":
        train_path = os.path.join(args.data_path, 'pretrain_data', 'train.txt')
        val_path = os.path.join(args.data_path, 'pretrain_data', 'val.txt')
    elif args.train_type == "finetune_std":
        train_path = os.path.join(args.data_path, 'finetune_std_data', 'train_biggest.txt')
        val_path = os.path.join(args.data_path, 'finetune_std_data', 'val.txt')
    else:
        train_path = os.path.join(args.data_path, 'finetune_mmi_data', 'train.txt')
        val_path = os.path.join(args.data_path, 'finetune_mmi_data', 'val.txt')


    train_dataset = MyDataset(train_path,args,logger)
    validate_dataset = MyDataset(val_path, args,logger)

    train(model, logger, train_dataset, validate_dataset, args)


if __name__ == '__main__':
    main()

        代码中给出了预训练和微调的全部代码,当然还有数据加载的代码;注意从头预训练一个GPT2和微调都是采用同一个模型结构GPT2LMHeadModel模型,只不过是前者没有加载权重,随机初始化的权重;后者是加载了预训练过的权重。由于数据量巨大,采用3090都训练了几个星期。训练过程就不一一展示了。

        后面为了保证推理速度能够满足并发需求,希望batch_size=100的时候推理能在1S内结束,那就需要对模型进行压缩。压缩也很简单,直接从头预训练一个6层的GPT2然后再进行微调。代码和之前的一样,只是配置不同。

3、模型推理

        模型推理要注意的是:第一batch解码的时候,要考虑到padding的影响,只有padding在句子的左边才不会对生成产生影响;第二就是解码策略的选择,这个就需要多去尝试,topk、topp、repetition_penalty(重复惩罚系数)、num_beams等参数(具体的理解和参考之前的文章——浅谈文本生成或者文本翻译解码策略);最后就是变量占用显存的释放

代码如下:

def text_batch_generate(model,tokenizer,args, texts):
    datas = []
    attention_masks = []

    for text in texts:
        input_ids = tokenizer(text)['input_ids']
        attention_mask = tokenizer(text)['attention_mask']
        input_ids = torch.tensor(input_ids,dtype=torch.long)
        attention_mask = torch.tensor(attention_mask,dtype=torch.long)
        datas.append(input_ids)
        attention_masks.append(attention_mask)

    datas = pad_sequence(datas, padding_value=0, padding='pre')
    attention_masks = pad_sequence(attention_masks, padding_value=0, padding='pre')

    curr_input_tensor = datas.to(args.device)
    attention_masks = attention_masks.to(args.device)

    batch = {'input_ids': curr_input_tensor, 'attention_mask': attention_masks}
    max_length = 64 + curr_input_tensor.shape[1]
    num_returns = 3
    topktopp_translations = model.generate(**batch, top_k=8, num_return_sequences=num_returns, max_length=max_length,do_sample=True,repetition_penalty=0.8, use_cache=True, num_beams=num_returns).detach().cpu().tolist()

    res = tokenizer.batch_decode(topktopp_translations, skip_special_tokens=True)

    del topktopp_translations
    del batch
    del curr_input_tensor
    del attention_masks
    torch.cuda.empty_cache()

    lengths = []
    for text in texts:
        for _ in range(num_returns):
            lengths.append(len(text.replace('[SEP]','')))
    res = [re.replace(' ', '')[length:] for length,re in zip(lengths,res)]

    max = 0
    index = 0
    count = 0
    final_res = []
    for i, re in enumerate(res):
        if count < num_returns:
            if len(re) > max:
                max = len(re)
                index = i
            count += 1
        else:
            final_res.append(res[index])
            max = 0
            count = 0

            if count < num_returns:
                if len(re) > max:
                    max = len(re)
                    index = i
                count += 1

    if len(final_res) < len(res)//num_returns:
        final_res.append(res[index])


    print(final_res)
    assert len(final_res) == len(res)//num_returns

    return final_res

简单的说一说解码过程,首先把文本通过tokenizer映射成token,使用pad_pad_sequence进行padding;然后就把tensors输入到模型中得到解码结果,主要就是采用了如下函数(huggingface出品的transformers中)

model.generate(**batch, top_k=8, num_return_sequences=num_returns, max_length=max_length,do_sample=True,repetition_penalty=0.8, use_cache=True, num_beams=num_returns)

它内置了5中解码模式,把贪心、beamsearch、topk和topp都融合在一起了。

4、效果展示

        做了一个demo,采用flask+html+js+css(前端代码就不展示了,网上到处都是,我也是网上找的)来展示这个GPT2训练的端到端的模型效果如何

不错的对话逻辑

GPT2中文文本生成对话应用尝试_第4张图片

还行

GPT2中文文本生成对话应用尝试_第5张图片

逻辑错误

GPT2中文文本生成对话应用尝试_第6张图片

单轮回答

GPT2中文文本生成对话应用尝试_第7张图片         

 GPT2中文文本生成对话应用尝试_第8张图片

 错误的回答

GPT2中文文本生成对话应用尝试_第9张图片

总体来说对话效果还是稍微差一点。单轮的问答大部分还是不错的,符合我们的预期;能把语料中的知识能学习到;但是多轮的时候就不可控了,还有一些回答逻辑错误,重复回答,以及不符合角色定位等等。如果能把这些问题都解决好的话,那么端到端的生成就可以作为商用了;不过如果用闲聊的语料进行训练,那么只要保证语料的质量,一个生成式闲聊的机器人还是有可能的。

        本文主要是把GPT2这种生成模型,依赖GPT2-chat项目的思路进行了语料的迁移训练和效果验证,发现使用在问答要求比较高的领域和业务场景下(逻辑强、回答准确)还是很欠缺的;但是回答的多样性和丰富性确实很好。

参考文章

transformers

基于GPT2的中文闲聊机器人/GPT2 for Chinese chitchat

你可能感兴趣的:(#,文本生成和翻译,p2p,linq,网络协议)