yolov5 提速多GPU训练显存低的问题

yolov5多GPU训练显存低

修改前:

按照配置,在train.py配置如下:
gpu配置如上图
运行 python train.py 后nvidia-smi 显示显存占用如下:
yolov5 提速多GPU训练显存低的问题_第1张图片

修改后

参考yolov5 官方中的issue中,有人提到的分布式多进程的方法:

在yolov5运行的虚拟环境下,找到torch的distributed 的环境:比如我的在conda3/envs/rcnn/lib/python3.6/site-packages/torch/distributed/;
在distributed文件下,新建多进程的脚本,命名为yolov5_launch.py:


import sys
import subprocess
import os
from argparse import ArgumentParser, REMAINDER


def parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(description="PyTorch distributed training launch "
                                        "helper utility that will spawn up "
                                        "multiple distributed processes")

    # Optional arguments for the launch helper
    parser.add_argument("--nnodes", type=int, default=1,
                        help="The number of nodes to use for distributed "
                             "training")
    parser.add_argument("--node_rank", type=int, default=0,
                        help="The rank of the node for multi-node distributed "
                             "training")
    parser.add_argument("--nproc_per_node", type=int, default=2,
                        help="The number of processes to launch on each node, "
                             "for GPU training, this is recommended to be set "
                             "to the number of GPUs in your system so that "
                             "each process can be bound to a single GPU.")#修改成你对应GPU的个数
    parser.add_argument("--master_addr", default="127.0.0.1", type=str,
                        help="Master node (rank 0)'s address, should be either "
                             "the IP address or the hostname of node 0, for "
                             "single node multi-proc training, the "
                             "--master_addr can simply be 127.0.0.1")
    parser.add_argument("--master_port", default=29528, type=int,
                        help="Master node (rank 0)'s free port that needs to "
                             "be used for communication during distributed "
                             "training")
    parser.add_argument("--use_env", default=False, action="store_true",
                        help="Use environment variable to pass "
                             "'local rank'. For legacy reasons, the default value is False. "
                             "If set to True, the script will not pass "
                             "--local_rank as argument, and will instead set LOCAL_RANK.")
    parser.add_argument("-m", "--module", default=False, action="store_true",
                        help="Changes each process to interpret the launch script "
                             "as a python module, executing with the same behavior as"
                             "'python -m'.")
    parser.add_argument("--no_python", default=False, action="store_true",
                        help="Do not prepend the training script with \"python\" - just exec "
                             "it directly. Useful when the script is not a Python script.")

    # # positional
    # parser.add_argument("training_script", type=str,default=r"train,py"
    #                     help="The full path to the single GPU training "
    #                          "program/script to be launched in parallel, "
    #                          "followed by all the arguments for the "
    #                          "training script")

    # # rest from the training program
    # parser.add_argument('training_script_args', nargs=REMAINDER)
    return parser.parse_args()

def main():
    args = parse_args()
    args.training_script = r"yolov5-master/train.py"#修改成你要训练的train.py的绝对路径
    # world size in terms of number of processes
    dist_world_size = args.nproc_per_node * args.nnodes

    # set PyTorch distributed related environmental variables
    current_env = os.environ.copy()
    current_env["MASTER_ADDR"] = args.master_addr
    current_env["MASTER_PORT"] = str(args.master_port)
    current_env["WORLD_SIZE"] = str(dist_world_size)

    processes = []

    if 'OMP_NUM_THREADS' not in os.environ and args.nproc_per_node > 1:
        current_env["OMP_NUM_THREADS"] = str(1)
        print("*****************************************\n"
              "Setting OMP_NUM_THREADS environment variable for each process "
              "to be {} in default, to avoid your system being overloaded, "
              "please further tune the variable for optimal performance in "
              "your application as needed. \n"
              "*****************************************".format(current_env["OMP_NUM_THREADS"]))

    for local_rank in range(0, args.nproc_per_node):
        # each process's rank
        dist_rank = args.nproc_per_node * args.node_rank + local_rank
        current_env["RANK"] = str(dist_rank)
        current_env["LOCAL_RANK"] = str(local_rank)

        # spawn the processes
        with_python = not args.no_python
        cmd = []
        if with_python:
            cmd = [sys.executable, "-u"]
            if args.module:
                cmd.append("-m")
        else:
            if not args.use_env:
                raise ValueError("When using the '--no_python' flag, you must also set the '--use_env' flag.")
            if args.module:
                raise ValueError("Don't use both the '--no_python' flag and the '--module' flag at the same time.")

        cmd.append(args.training_script)

        if not args.use_env:
            cmd.append("--local_rank={}".format(local_rank))

        # cmd.extend(args.training_script_args)

        process = subprocess.Popen(cmd, env=current_env)
        processes.append(process)

    for process in processes:
        process.wait()
        if process.returncode != 0:
            raise subprocess.CalledProcessError(returncode=process.returncode,
                                                cmd=cmd)


if __name__ == "__main__":
    # import os 
    # os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
    main()

运行上述脚本: python yolov5_launch.py

yolov5 提速多GPU训练显存低的问题_第2张图片
显存占用超过80%,注意这里可以将train.py 配置里面的batch_size 调大;

另外一种方法

在网上看到另外一种方法,是不用在distributed文件夹下面新建文件这样麻烦,在

python -m torch.distributed.launch --nproc_per_node 2 train.py --batch-size 64 --data data/Allcls_one.yaml --weights weights/yolov5l.pt --cfg models/yolov5l_1cls.yaml --epochs 1 --device 0,1

训练时,在python后面加上-m torch.distributed.launch --nproc_per_node (修改成你的gpu的个数)再运行train.py 再后面加上各种配置文件

这个方法亲测可行,比第一种方法简单有效!

你可能感兴趣的:(目标检测,pytorch,人工智能,python)