人工智能基础第五次作业

实现【卷积-池化-激活】代码,并分析总结

  1. For循环版本:手工实现 卷积-池化-激活
import numpy as np

x = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1],
              [-1, 1, -1, -1, -1, -1, -1, 1, -1],
              [-1, -1, 1, -1, -1, -1, 1, -1, -1],
              [-1, -1, -1, 1, -1, 1, -1, -1, -1],
              [-1, -1, -1, -1, 1, -1, -1, -1, -1],
              [-1, -1, -1, 1, -1, 1, -1, -1, -1],
              [-1, -1, 1, -1, -1, -1, 1, -1, -1],
              [-1, 1, -1, -1, -1, -1, -1, 1, -1],
              [-1, -1, -1, -1, -1, -1, -1, -1, -1]])
print("x=\n", x)
# 初始化 三个 卷积核
Kernel = [[0 for i in range(0, 3)] for j in range(0, 3)]
Kernel[0] = np.array([[1, -1, -1],
                      [-1, 1, -1],
                      [-1, -1, 1]])
Kernel[1] = np.array([[1, -1, 1],
                      [-1, 1, -1],
                      [1, -1, 1]])
Kernel[2] = np.array([[-1, -1, 1],
                      [-1, 1, -1],
                      [1, -1, -1]])

# --------------- 卷积  ---------------
stride = 1  # 步长
feature_map_h = 7  # 特征图的高
feature_map_w = 7  # 特征图的宽
feature_map = [0 for i in range(0, 3)]  # 初始化3个特征图
for i in range(0, 3):
    feature_map[i] = np.zeros((feature_map_h, feature_map_w))  # 初始化特征图
for h in range(feature_map_h):  # 向下滑动,得到卷积后的固定行
    for w in range(feature_map_w):  # 向右滑动,得到卷积后的固定行的列
        v_start = h * stride  # 滑动窗口的起始行(高)
        v_end = v_start + 3  # 滑动窗口的结束行(高)
        h_start = w * stride  # 滑动窗口的起始列(宽)
        h_end = h_start + 3  # 滑动窗口的结束列(宽)
        window = x[v_start:v_end, h_start:h_end]  # 从图切出一个滑动窗口
        for i in range(0, 3):
            feature_map[i][h, w] = np.divide(np.sum(np.multiply(window, Kernel[i][:, :])), 9)
print("feature_map:\n", np.around(feature_map, decimals=2))

# --------------- 池化  ---------------
pooling_stride = 2  # 步长
pooling_h = 4  # 特征图的高
pooling_w = 4  # 特征图的宽
feature_map_pad_0 = [[0 for i in range(0, 8)] for j in range(0, 8)]
for i in range(0, 3):  # 特征图 补 0 ,行 列 都要加 1 (因为上一层是奇数,池化窗口用的偶数)
    feature_map_pad_0[i] = np.pad(feature_map[i], ((0, 1), (0, 1)), 'constant', constant_values=(0, 0))
# print("feature_map_pad_0 0:\n", np.around(feature_map_pad_0[0], decimals=2))

pooling = [0 for i in range(0, 3)]
for i in range(0, 3):
    pooling[i] = np.zeros((pooling_h, pooling_w))  # 初始化特征图
for h in range(pooling_h):  # 向下滑动,得到卷积后的固定行
    for w in range(pooling_w):  # 向右滑动,得到卷积后的固定行的列
        v_start = h * pooling_stride  # 滑动窗口的起始行(高)
        v_end = v_start + 2  # 滑动窗口的结束行(高)
        h_start = w * pooling_stride  # 滑动窗口的起始列(宽)
        h_end = h_start + 2  # 滑动窗口的结束列(宽)
        for i in range(0, 3):
            pooling[i][h, w] = np.max(feature_map_pad_0[i][v_start:v_end, h_start:h_end])
print("pooling:\n", np.around(pooling[0], decimals=2))
print("pooling:\n", np.around(pooling[1], decimals=2))
print("pooling:\n", np.around(pooling[2], decimals=2))


# --------------- 激活  ---------------
def relu(x):
    return (abs(x) + x) / 2


relu_map_h = 7  # 特征图的高
relu_map_w = 7  # 特征图的宽
relu_map = [0 for i in range(0, 3)]  # 初始化3个特征图
for i in range(0, 3):
    relu_map[i] = np.zeros((relu_map_h, relu_map_w))  # 初始化特征图

for i in range(0, 3):
    relu_map[i] = relu(feature_map[i])

print("relu map :\n", np.around(relu_map[0], decimals=2))
print("relu map :\n", np.around(relu_map[1], decimals=2))
print("relu map :\n", np.around(relu_map[2], decimals=2))


运行结果:

"D:\Program Files (x86)\python\python.exe" C:/Users/19571/Desktop/1.py
x=
 [[-1 -1 -1 -1 -1 -1 -1 -1 -1]
 [-1  1 -1 -1 -1 -1 -1  1 -1]
 [-1 -1  1 -1 -1 -1  1 -1 -1]
 [-1 -1 -1  1 -1  1 -1 -1 -1]
 [-1 -1 -1 -1  1 -1 -1 -1 -1]
 [-1 -1 -1  1 -1  1 -1 -1 -1]
 [-1 -1  1 -1 -1 -1  1 -1 -1]
 [-1  1 -1 -1 -1 -1 -1  1 -1]
 [-1 -1 -1 -1 -1 -1 -1 -1 -1]]
feature_map:
 [[[ 0.78 -0.11  0.11  0.33  0.56 -0.11  0.33]
  [-0.11  1.   -0.11  0.33 -0.11  0.11 -0.11]
  [ 0.11 -0.11  1.   -0.33  0.11 -0.11  0.56]
  [ 0.33  0.33 -0.33  0.56 -0.33  0.33  0.33]
  [ 0.56 -0.11  0.11 -0.33  1.   -0.11  0.11]
  [-0.11  0.11 -0.11  0.33 -0.11  1.   -0.11]
  [ 0.33 -0.11  0.56  0.33  0.11 -0.11  0.78]]

 [[ 0.33 -0.56  0.11 -0.11  0.11 -0.56  0.33]
  [-0.56  0.56 -0.56  0.33 -0.56  0.56 -0.56]
  [ 0.11 -0.56  0.56 -0.78  0.56 -0.56  0.11]
  [-0.11  0.33 -0.78  1.   -0.78  0.33 -0.11]
  [ 0.11 -0.56  0.56 -0.78  0.56 -0.56  0.11]
  [-0.56  0.56 -0.56  0.33 -0.56  0.56 -0.56]
  [ 0.33 -0.56  0.11 -0.11  0.11 -0.56  0.33]]

 [[ 0.33 -0.11  0.56  0.33  0.11 -0.11  0.78]
  [-0.11  0.11 -0.11  0.33 -0.11  1.   -0.11]
  [ 0.56 -0.11  0.11 -0.33  1.   -0.11  0.11]
  [ 0.33  0.33 -0.33  0.56 -0.33  0.33  0.33]
  [ 0.11 -0.11  1.   -0.33  0.11 -0.11  0.56]
  [-0.11  1.   -0.11  0.33 -0.11  0.11 -0.11]
  [ 0.78 -0.11  0.11  0.33  0.56 -0.11  0.33]]]
pooling:
 [[1.   0.33 0.56 0.33]
 [0.33 1.   0.33 0.56]
 [0.56 0.33 1.   0.11]
 [0.33 0.56 0.11 0.78]]
pooling:
 [[0.56 0.33 0.56 0.33]
 [0.33 1.   0.56 0.11]
 [0.56 0.56 0.56 0.11]
 [0.33 0.11 0.11 0.33]]
pooling:
 [[0.33 0.56 1.   0.78]
 [0.56 0.56 1.   0.33]
 [1.   1.   0.11 0.56]
 [0.78 0.33 0.56 0.33]]
relu map :
 [[0.78 0.   0.11 0.33 0.56 0.   0.33]
 [0.   1.   0.   0.33 0.   0.11 0.  ]
 [0.11 0.   1.   0.   0.11 0.   0.56]
 [0.33 0.33 0.   0.56 0.   0.33 0.33]
 [0.56 0.   0.11 0.   1.   0.   0.11]
 [0.   0.11 0.   0.33 0.   1.   0.  ]
 [0.33 0.   0.56 0.33 0.11 0.   0.78]]
relu map :
 [[0.33 0.   0.11 0.   0.11 0.   0.33]
 [0.   0.56 0.   0.33 0.   0.56 0.  ]
 [0.11 0.   0.56 0.   0.56 0.   0.11]
 [0.   0.33 0.   1.   0.   0.33 0.  ]
 [0.11 0.   0.56 0.   0.56 0.   0.11]
 [0.   0.56 0.   0.33 0.   0.56 0.  ]
 [0.33 0.   0.11 0.   0.11 0.   0.33]]
relu map :
 [[0.33 0.   0.56 0.33 0.11 0.   0.78]
 [0.   0.11 0.   0.33 0.   1.   0.  ]
 [0.56 0.   0.11 0.   1.   0.   0.11]
 [0.33 0.33 0.   0.56 0.   0.33 0.33]
 [0.11 0.   1.   0.   0.11 0.   0.56]
 [0.   1.   0.   0.33 0.   0.11 0.  ]
 [0.78 0.   0.11 0.33 0.56 0.   0.33]]

Process finished with exit code 0


卷积
卷积部分使用一个类似二维双指针的东西维护一个3行3列的滑动窗口,然后将滑动窗口的东西进行卷积计算。

池化
池化类似于卷积的过程,对一个 4x4 feature map邻域内的值,用一个 2x2 的filter,步长为2进行‘扫描’,选择最大值输出到下一层.

2. Pytorch版本:调用函数完成 卷积-池化-激活

# https://blog.csdn.net/qq_26369907/article/details/88366147
# https://zhuanlan.zhihu.com/p/405242579
import numpy as np
import torch
import torch.nn as nn

x = torch.tensor([[[[-1, -1, -1, -1, -1, -1, -1, -1, -1],
                    [-1, 1, -1, -1, -1, -1, -1, 1, -1],
                    [-1, -1, 1, -1, -1, -1, 1, -1, -1],
                    [-1, -1, -1, 1, -1, 1, -1, -1, -1],
                    [-1, -1, -1, -1, 1, -1, -1, -1, -1],
                    [-1, -1, -1, 1, -1, 1, -1, -1, -1],
                    [-1, -1, 1, -1, -1, -1, 1, -1, -1],
                    [-1, 1, -1, -1, -1, -1, -1, 1, -1],
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1]]]], dtype=torch.float)
print(x.shape)
print(x)

print("--------------- 卷积  ---------------")
conv1 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv1.weight.data = torch.Tensor([[[[1, -1, -1],
                                    [-1, 1, -1],
                                    [-1, -1, 1]]
                                   ]])
conv2 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv2.weight.data = torch.Tensor([[[[1, -1, 1],
                                    [-1, 1, -1],
                                    [1, -1, 1]]
                                   ]])
conv3 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv3.weight.data = torch.Tensor([[[[-1, -1, 1],
                                    [-1, 1, -1],
                                    [1, -1, -1]]
                                   ]])

feature_map1 = conv1(x)
feature_map2 = conv2(x)
feature_map3 = conv3(x)

print(feature_map1 / 9)
print(feature_map2 / 9)
print(feature_map3 / 9)

print("--------------- 池化  ---------------")
max_pool = nn.MaxPool2d(2, padding=0, stride=2)  # Pooling
zeroPad = nn.ZeroPad2d(padding=(0, 1, 0, 1))  # pad 0 , Left Right Up Down

feature_map_pad_0_1 = zeroPad(feature_map1)
feature_pool_1 = max_pool(feature_map_pad_0_1)
feature_map_pad_0_2 = zeroPad(feature_map2)
feature_pool_2 = max_pool(feature_map_pad_0_2)
feature_map_pad_0_3 = zeroPad(feature_map3)
feature_pool_3 = max_pool(feature_map_pad_0_3)

print(feature_pool_1.size())
print(feature_pool_1 / 9)
print(feature_pool_2 / 9)
print(feature_pool_3 / 9)

print("--------------- 激活  ---------------")
activation_function = nn.ReLU()

feature_relu1 = activation_function(feature_map1)
feature_relu2 = activation_function(feature_map2)
feature_relu3 = activation_function(feature_map3)
print(feature_relu1 / 9)
print(feature_relu2 / 9)
print(feature_relu3 / 9)


运行结果:

"D:\Program Files (x86)\python\python.exe" C:/Users/19571/Desktop/1.py
torch.Size([1, 1, 9, 9])
tensor([[[[-1., -1., -1., -1., -1., -1., -1., -1., -1.],
          [-1.,  1., -1., -1., -1., -1., -1.,  1., -1.],
          [-1., -1.,  1., -1., -1., -1.,  1., -1., -1.],
          [-1., -1., -1.,  1., -1.,  1., -1., -1., -1.],
          [-1., -1., -1., -1.,  1., -1., -1., -1., -1.],
          [-1., -1., -1.,  1., -1.,  1., -1., -1., -1.],
          [-1., -1.,  1., -1., -1., -1.,  1., -1., -1.],
          [-1.,  1., -1., -1., -1., -1., -1.,  1., -1.],
          [-1., -1., -1., -1., -1., -1., -1., -1., -1.]]]])
--------------- 卷积  ---------------
tensor([[[[ 0.7740, -0.1149,  0.1073,  0.3296,  0.5518, -0.1149,  0.3296],
          [-0.1149,  0.9962, -0.1149,  0.3296, -0.1149,  0.1073, -0.1149],
          [ 0.1073, -0.1149,  0.9962, -0.3371,  0.1073, -0.1149,  0.5518],
          [ 0.3296,  0.3296, -0.3371,  0.5518, -0.3371,  0.3296,  0.3296],
          [ 0.5518, -0.1149,  0.1073, -0.3371,  0.9962, -0.1149,  0.1073],
          [-0.1149,  0.1073, -0.1149,  0.3296, -0.1149,  0.9962, -0.1149],
          [ 0.3296, -0.1149,  0.5518,  0.3296,  0.1073, -0.1149,  0.7740]]]],
       grad_fn=<DivBackward0>)
tensor([[[[ 0.3070, -0.5819,  0.0848, -0.1374,  0.0848, -0.5819,  0.3070],
          [-0.5819,  0.5292, -0.5819,  0.3070, -0.5819,  0.5292, -0.5819],
          [ 0.0848, -0.5819,  0.5292, -0.8041,  0.5292, -0.5819,  0.0848],
          [-0.1374,  0.3070, -0.8041,  0.9737, -0.8041,  0.3070, -0.1374],
          [ 0.0848, -0.5819,  0.5292, -0.8041,  0.5292, -0.5819,  0.0848],
          [-0.5819,  0.5292, -0.5819,  0.3070, -0.5819,  0.5292, -0.5819],
          [ 0.3070, -0.5819,  0.0848, -0.1374,  0.0848, -0.5819,  0.3070]]]],
       grad_fn=<DivBackward0>)
tensor([[[[ 0.3193, -0.1251,  0.5416,  0.3193,  0.0971, -0.1251,  0.7638],
          [-0.1251,  0.0971, -0.1251,  0.3193, -0.1251,  0.9860, -0.1251],
          [ 0.5416, -0.1251,  0.0971, -0.3473,  0.9860, -0.1251,  0.0971],
          [ 0.3193,  0.3193, -0.3473,  0.5416, -0.3473,  0.3193,  0.3193],
          [ 0.0971, -0.1251,  0.9860, -0.3473,  0.0971, -0.1251,  0.5416],
          [-0.1251,  0.9860, -0.1251,  0.3193, -0.1251,  0.0971, -0.1251],
          [ 0.7638, -0.1251,  0.0971,  0.3193,  0.5416, -0.1251,  0.3193]]]],
       grad_fn=<DivBackward0>)
--------------- 池化  ---------------
torch.Size([1, 1, 4, 4])
tensor([[[[0.9962, 0.3296, 0.5518, 0.3296],
          [0.3296, 0.9962, 0.3296, 0.5518],
          [0.5518, 0.3296, 0.9962, 0.1073],
          [0.3296, 0.5518, 0.1073, 0.7740]]]], grad_fn=<DivBackward0>)
tensor([[[[0.5292, 0.3070, 0.5292, 0.3070],
          [0.3070, 0.9737, 0.5292, 0.0848],
          [0.5292, 0.5292, 0.5292, 0.0848],
          [0.3070, 0.0848, 0.0848, 0.3070]]]], grad_fn=<DivBackward0>)
tensor([[[[0.3193, 0.5416, 0.9860, 0.7638],
          [0.5416, 0.5416, 0.9860, 0.3193],
          [0.9860, 0.9860, 0.0971, 0.5416],
          [0.7638, 0.3193, 0.5416, 0.3193]]]], grad_fn=<DivBackward0>)
--------------- 激活  ---------------
tensor([[[[0.7740, 0.0000, 0.1073, 0.3296, 0.5518, 0.0000, 0.3296],
          [0.0000, 0.9962, 0.0000, 0.3296, 0.0000, 0.1073, 0.0000],
          [0.1073, 0.0000, 0.9962, 0.0000, 0.1073, 0.0000, 0.5518],
          [0.3296, 0.3296, 0.0000, 0.5518, 0.0000, 0.3296, 0.3296],
          [0.5518, 0.0000, 0.1073, 0.0000, 0.9962, 0.0000, 0.1073],
          [0.0000, 0.1073, 0.0000, 0.3296, 0.0000, 0.9962, 0.0000],
          [0.3296, 0.0000, 0.5518, 0.3296, 0.1073, 0.0000, 0.7740]]]],
       grad_fn=<DivBackward0>)
tensor([[[[0.3070, 0.0000, 0.0848, 0.0000, 0.0848, 0.0000, 0.3070],
          [0.0000, 0.5292, 0.0000, 0.3070, 0.0000, 0.5292, 0.0000],
          [0.0848, 0.0000, 0.5292, 0.0000, 0.5292, 0.0000, 0.0848],
          [0.0000, 0.3070, 0.0000, 0.9737, 0.0000, 0.3070, 0.0000],
          [0.0848, 0.0000, 0.5292, 0.0000, 0.5292, 0.0000, 0.0848],
          [0.0000, 0.5292, 0.0000, 0.3070, 0.0000, 0.5292, 0.0000],
          [0.3070, 0.0000, 0.0848, 0.0000, 0.0848, 0.0000, 0.3070]]]],
       grad_fn=<DivBackward0>)
tensor([[[[0.3193, 0.0000, 0.5416, 0.3193, 0.0971, 0.0000, 0.7638],
          [0.0000, 0.0971, 0.0000, 0.3193, 0.0000, 0.9860, 0.0000],
          [0.5416, 0.0000, 0.0971, 0.0000, 0.9860, 0.0000, 0.0971],
          [0.3193, 0.3193, 0.0000, 0.5416, 0.0000, 0.3193, 0.3193],
          [0.0971, 0.0000, 0.9860, 0.0000, 0.0971, 0.0000, 0.5416],
          [0.0000, 0.9860, 0.0000, 0.3193, 0.0000, 0.0971, 0.0000],
          [0.7638, 0.0000, 0.0971, 0.3193, 0.5416, 0.0000, 0.3193]]]],
       grad_fn=<DivBackward0>)

Process finished with exit code 0


3. 可视化:了解数字与图像之间的关系

# https://blog.csdn.net/qq_26369907/article/details/88366147
# https://zhuanlan.zhihu.com/p/405242579
import torch
import torch.nn as nn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 #有中文出现的情况,需要u'内容
x = torch.tensor([[[[-1, -1, -1, -1, -1, -1, -1, -1, -1],
                    [-1, 1, -1, -1, -1, -1, -1, 1, -1],
                    [-1, -1, 1, -1, -1, -1, 1, -1, -1],
                    [-1, -1, -1, 1, -1, 1, -1, -1, -1],
                    [-1, -1, -1, -1, 1, -1, -1, -1, -1],
                    [-1, -1, -1, 1, -1, 1, -1, -1, -1],
                    [-1, -1, 1, -1, -1, -1, 1, -1, -1],
                    [-1, 1, -1, -1, -1, -1, -1, 1, -1],
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1]]]], dtype=torch.float)
print(x.shape)
print(x)
img = x.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
plt.title('原图')

print("--------------- 卷积  ---------------")
conv1 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv1.weight.data = torch.Tensor([[[[1, -1, -1],
                                    [-1, 1, -1],
                                    [-1, -1, 1]]
                                   ]])
img = conv1.weight.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
img1 = img
plt.title('Kernel 1')
conv2 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv2.weight.data = torch.Tensor([[[[1, -1, 1],
                                    [-1, 1, -1],
                                    [1, -1, 1]]
                                   ]])
img = conv2.weight.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
img2 = img
plt.title('Kernel 2')
conv3 = nn.Conv2d(1, 1, (3, 3), 1)  # in_channel , out_channel , kennel_size , stride
conv3.weight.data = torch.Tensor([[[[-1, -1, 1],
                                    [-1, 1, -1],
                                    [1, -1, -1]]
                                   ]])
img = conv3.weight.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
img3 = img
plt.title('Kernel 3')

feature_map1 = conv1(x)
feature_map2 = conv2(x)
feature_map3 = conv3(x)

print(feature_map1 / 9)
print(feature_map2 / 9)
print(feature_map3 / 9)

img = feature_map1.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
plt.title('卷积后的特征图1')
img4 = img

print("--------------- 池化  ---------------")
max_pool = nn.MaxPool2d(2, padding=0, stride=2)  # Pooling
zeroPad = nn.ZeroPad2d(padding=(0, 1, 0, 1))  # pad 0 , Left Right Up Down

feature_map_pad_0_1 = zeroPad(feature_map1)
feature_pool_1 = max_pool(feature_map_pad_0_1)
feature_map_pad_0_2 = zeroPad(feature_map2)
feature_pool_2 = max_pool(feature_map_pad_0_2)
feature_map_pad_0_3 = zeroPad(feature_map3)
feature_pool_3 = max_pool(feature_map_pad_0_3)

print(feature_pool_1.size())
print(feature_pool_1 / 9)
print(feature_pool_2 / 9)
print(feature_pool_3 / 9)
img = feature_pool_1.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
img5 = img
plt.title('卷积池化后的特征图1')

print("--------------- 激活  ---------------")
activation_function = nn.ReLU()

feature_relu1 = activation_function(feature_map1)
feature_relu2 = activation_function(feature_map2)
feature_relu3 = activation_function(feature_map3)
print(feature_relu1 / 9)
print(feature_relu2 / 9)
print(feature_relu3 / 9)
img = feature_relu1.data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
plt.title('卷积 + relu 后的特征图1')
img6 = img

titles = ['原图', 'Kernel 1 ', 'Kernel 2', 'Kernel 3', ' 卷积后的特征图1', '卷积池化后的特征图1', '卷积 + relu 后的特征图1']
images = [img, img1, img2, img3, img4, img5, img6]

for i in range(7):
    plt.subplot(3, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])

plt.show()

运行结果:
我稍微改动了一下源代码,把他变成子图的形式展示出来,方便对比
人工智能基础第五次作业_第1张图片

"D:\Program Files (x86)\python\python.exe" C:/Users/19571/Desktop/1.py
torch.Size([1, 1, 9, 9])
tensor([[[[-1., -1., -1., -1., -1., -1., -1., -1., -1.],
          [-1.,  1., -1., -1., -1., -1., -1.,  1., -1.],
          [-1., -1.,  1., -1., -1., -1.,  1., -1., -1.],
          [-1., -1., -1.,  1., -1.,  1., -1., -1., -1.],
          [-1., -1., -1., -1.,  1., -1., -1., -1., -1.],
          [-1., -1., -1.,  1., -1.,  1., -1., -1., -1.],
          [-1., -1.,  1., -1., -1., -1.,  1., -1., -1.],
          [-1.,  1., -1., -1., -1., -1., -1.,  1., -1.],
          [-1., -1., -1., -1., -1., -1., -1., -1., -1.]]]])
--------------- 卷积  ---------------
tensor([[[[ 0.7841, -0.1048,  0.1174,  0.3396,  0.5618, -0.1048,  0.3396],
          [-0.1048,  1.0063, -0.1048,  0.3396, -0.1048,  0.1174, -0.1048],
          [ 0.1174, -0.1048,  1.0063, -0.3270,  0.1174, -0.1048,  0.5618],
          [ 0.3396,  0.3396, -0.3270,  0.5618, -0.3270,  0.3396,  0.3396],
          [ 0.5618, -0.1048,  0.1174, -0.3270,  1.0063, -0.1048,  0.1174],
          [-0.1048,  0.1174, -0.1048,  0.3396, -0.1048,  1.0063, -0.1048],
          [ 0.3396, -0.1048,  0.5618,  0.3396,  0.1174, -0.1048,  0.7841]]]],
       grad_fn=<DivBackward0>)
tensor([[[[ 0.3590, -0.5299,  0.1367, -0.0855,  0.1367, -0.5299,  0.3590],
          [-0.5299,  0.5812, -0.5299,  0.3590, -0.5299,  0.5812, -0.5299],
          [ 0.1367, -0.5299,  0.5812, -0.7522,  0.5812, -0.5299,  0.1367],
          [-0.0855,  0.3590, -0.7522,  1.0256, -0.7522,  0.3590, -0.0855],
          [ 0.1367, -0.5299,  0.5812, -0.7522,  0.5812, -0.5299,  0.1367],
          [-0.5299,  0.5812, -0.5299,  0.3590, -0.5299,  0.5812, -0.5299],
          [ 0.3590, -0.5299,  0.1367, -0.0855,  0.1367, -0.5299,  0.3590]]]],
       grad_fn=<DivBackward0>)
tensor([[[[ 0.3449, -0.0995,  0.5672,  0.3449,  0.1227, -0.0995,  0.7894],
          [-0.0995,  0.1227, -0.0995,  0.3449, -0.0995,  1.0116, -0.0995],
          [ 0.5672, -0.0995,  0.1227, -0.3217,  1.0116, -0.0995,  0.1227],
          [ 0.3449,  0.3449, -0.3217,  0.5672, -0.3217,  0.3449,  0.3449],
          [ 0.1227, -0.0995,  1.0116, -0.3217,  0.1227, -0.0995,  0.5672],
          [-0.0995,  1.0116, -0.0995,  0.3449, -0.0995,  0.1227, -0.0995],
          [ 0.7894, -0.0995,  0.1227,  0.3449,  0.5672, -0.0995,  0.3449]]]],
       grad_fn=<DivBackward0>)
--------------- 池化  ---------------
torch.Size([1, 1, 4, 4])
tensor([[[[1.0063, 0.3396, 0.5618, 0.3396],
          [0.3396, 1.0063, 0.3396, 0.5618],
          [0.5618, 0.3396, 1.0063, 0.1174],
          [0.3396, 0.5618, 0.1174, 0.7841]]]], grad_fn=<DivBackward0>)
tensor([[[[0.5812, 0.3590, 0.5812, 0.3590],
          [0.3590, 1.0256, 0.5812, 0.1367],
          [0.5812, 0.5812, 0.5812, 0.1367],
          [0.3590, 0.1367, 0.1367, 0.3590]]]], grad_fn=<DivBackward0>)
tensor([[[[0.3449, 0.5672, 1.0116, 0.7894],
          [0.5672, 0.5672, 1.0116, 0.3449],
          [1.0116, 1.0116, 0.1227, 0.5672],
          [0.7894, 0.3449, 0.5672, 0.3449]]]], grad_fn=<DivBackward0>)
--------------- 激活  ---------------
tensor([[[[0.7841, 0.0000, 0.1174, 0.3396, 0.5618, 0.0000, 0.3396],
          [0.0000, 1.0063, 0.0000, 0.3396, 0.0000, 0.1174, 0.0000],
          [0.1174, 0.0000, 1.0063, 0.0000, 0.1174, 0.0000, 0.5618],
          [0.3396, 0.3396, 0.0000, 0.5618, 0.0000, 0.3396, 0.3396],
          [0.5618, 0.0000, 0.1174, 0.0000, 1.0063, 0.0000, 0.1174],
          [0.0000, 0.1174, 0.0000, 0.3396, 0.0000, 1.0063, 0.0000],
          [0.3396, 0.0000, 0.5618, 0.3396, 0.1174, 0.0000, 0.7841]]]],
       grad_fn=<DivBackward0>)
tensor([[[[0.3590, 0.0000, 0.1367, 0.0000, 0.1367, 0.0000, 0.3590],
          [0.0000, 0.5812, 0.0000, 0.3590, 0.0000, 0.5812, 0.0000],
          [0.1367, 0.0000, 0.5812, 0.0000, 0.5812, 0.0000, 0.1367],
          [0.0000, 0.3590, 0.0000, 1.0256, 0.0000, 0.3590, 0.0000],
          [0.1367, 0.0000, 0.5812, 0.0000, 0.5812, 0.0000, 0.1367],
          [0.0000, 0.5812, 0.0000, 0.3590, 0.0000, 0.5812, 0.0000],
          [0.3590, 0.0000, 0.1367, 0.0000, 0.1367, 0.0000, 0.3590]]]],
       grad_fn=<DivBackward0>)
tensor([[[[0.3449, 0.0000, 0.5672, 0.3449, 0.1227, 0.0000, 0.7894],
          [0.0000, 0.1227, 0.0000, 0.3449, 0.0000, 1.0116, 0.0000],
          [0.5672, 0.0000, 0.1227, 0.0000, 1.0116, 0.0000, 0.1227],
          [0.3449, 0.3449, 0.0000, 0.5672, 0.0000, 0.3449, 0.3449],
          [0.1227, 0.0000, 1.0116, 0.0000, 0.1227, 0.0000, 0.5672],
          [0.0000, 1.0116, 0.0000, 0.3449, 0.0000, 0.1227, 0.0000],
          [0.7894, 0.0000, 0.1227, 0.3449, 0.5672, 0.0000, 0.3449]]]],
       grad_fn=<DivBackward0>)

Process finished with exit code 0


你可能感兴趣的:(人工智能基础第五次作业)