- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- 学习笔记1《吴恩达深度学习》Deep Learning
木懋懋
深度学习
P11.1.1欢迎Welcome深度学习改变了传统互联网业务,例如网络搜索和广告,但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注,深度学习做得非常好的一个方面就是读取X光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其他一些方面。如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,就学习这门课程。在接下来的十年中,我认为我们所有人都有机
- 吴恩达深度学习-学习笔记p1-p6
丢了橘子的夏天
深度学习学习笔记
哔哩哔哩网站视频-[双语字幕]吴恩达深度学习deeplearning.ai网站:up主:mHarvey,视频:[双语字幕]吴恩达深度学习deeplearning.ai一.p11.1欢迎二.p21.2什么是神经网络1.举例:根据面积预测房价假设有六个房子的房屋面积和价格,根据这个数据集,房屋面积预测房价的函数,这些是一个简单的神经网络神经元的功能就是输入面积完成线性运算,取不小于0的值,最后得到预测
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- 【吴恩达深度学习】— 参数、超参数、正则化
Sunflow007
32.jpg1.参数VS超参数1.1什么是超参数(Hyperparameters)?比如算法中的learningrate(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、(隐藏层单元数目)、choiceofactivationfunction(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。实际上深度学习有很多不同的超参数,
- 交并比(Intersection over union)
双木的木
吴恩达深度学习笔记深度学习知识点储备笔记算法机器学习python深度学习计算机视觉
来源:Coursera吴恩达深度学习课程如何判断目标检测算法运作良好呢?接下来,你将了解到并交比(intersectionoverunion)函数,可以用来评价目标检测算法。交并比(loU)函数做的是计算两个边界框交集和并集之比。两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙色阴影面积,然
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 吴恩达深度学习课程作业--C1W2
HELLOTREE1
1.3-Reshapingarraysv=v.reshape((v.shape[0]*v.shape[1],v.shape[2]))#v.shape[0]=a;v.shape[1]=b;v.shape[2]=c
- 吴恩达深度学习学习笔记-7建立神经网络
猪猪2000
吴恩达深度学习学习笔记神经网络深度学习人工智能机器学习
1.训练神经网络训练神经网络时,需要做许多决策。例如,有多少层网络每层含有多少个隐藏单元学习率各层采用哪些激活函数…这些决策无法一次决定好,通常在项目启动时,我们会先有一个初步想法,然后编码,并尝试运行这些代码,再根据结果完善自己的想法,改变策略。2.train/dev/testsets通常把数据分为训练集,验证集,测试集。我们用训练集数据训练模型,用验证集做holdoutcrossvalidat
- 【吴恩达深度学习】Keras tutorial - the Happy House
深海里的鱼(・ω<)★
人工智能机器学习深度学习keras深度学习tensorflow
Kerastutorial-theHappyHouseWelcometothefirstassignmentofweek2.Inthisassignment,youwill:LearntouseKeras,ahigh-levelneuralnetworksAPI(programmingframework),writteninPythonandcapableofrunningontopofsever
- 吴恩达深度学习第二课-第一周笔记及课后编程题
Giraffeee_
吴恩达深度学习深度学习人工智能机器学习
笔记训练_开发_测试集小数据时代训练集/测试集的分配比例大致遵循70%/30%或训练集/开发集(或crossvalidationset)/测试集的分配比例大致遵循60%/20%/20%大数据时代只要开发集能够确定哪一个算法/模型有更好的表现,测试集能够无偏评估模型的性能,就称赋予了开发集、测试集足够的数据量了;训练集将被赋予更大比重的数据量。如:训练集/开发集/测试集的比率为98%/2%/2%注:
- 吴恩达深度学习--神经网络的优化(1)
Kangrant
吴恩达深度学习
1.训练集,验证集,测试集选择最佳的Train/Dev/Testsets非常重要。除此之外,构建神经网络时,需要设置的参数很多:神经网络层数,神经元个数,学习率的大小。激活函数的选择等等。实际上很难第一次就确定好这些参数,大致过程是:先确定初始参数,构建神经网络模型,然后通过代码实现该模型,之后进行试验确定模型的性能。根据性能再不断调整参数,重复上述过程,直到让神经网络模型最优。由上述可知,深度学
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- 吴恩达深度学习笔记(50)-超参数训练的实践
极客Array
超参数训练的实践:PandasVSCaviar(Hyperparameterstuninginpractice:Pandasvs.Caviar)到现在为止,你已经听了许多关于如何搜索最优超参数的内容,在结束我们关于超参数搜索的讨论之前,我想最后和你分享一些建议和技巧,关于如何组织你的超参数搜索过程。如今的深度学习已经应用到许多不同的领域,某个应用领域的超参数设定,有可能通用于另一领域,不同的应用领
- 2019年上半年收集到的人工智能迁移学习干货文章
城市中迷途小书童
2019年上半年收集到的人工智能迁移学习干货文章迁移学习全面指南:概念、项目实战、优势、挑战迁移学习:该做的和不该做的事深度学习不得不会的迁移学习TransferLearning谷歌最新的PlaNet对强化学习以及迁移学习的意义及启发迁移学习时间序列分类如何提高强化学习的可靠性?迁移学习之最大分类器差异的无监督域适应吴恩达深度学习笔记(67)-迁移学习(Transferlearning)深度学习不
- 吴恩达深度学习intuition
Karen_Yu_
机器学习
这里是看吴恩达课程的一些记录和联想(因为以前听过,因此不会很细致,只做个人记录)课程链接首先提到trainingset,validationset(devset),testset的分割问题。老师提到,最常用的划分方法传统方法是三七分(也就是training70%,validation+test30%,一般而言validation20%test10%),同时,这也是应对数据集不太大的时候的方法。也可
- 吴恩达深度学习笔记(2)-什么是神经网络(Neural Network)
极客Array
什么是神经网络?(WhatisaNeuralNetwork)我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个视频中,会讲解一些直观的基础知识。首先,让我们从一个房价预测的例子开始讲起。假设你有一个数据集,它包含了六栋房子的信息。所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格。这时,你想要拟合一个根据房屋面积预
- 吴恩达深度学习笔记(28)-网络训练验证测试数据集的组成介绍
极客Array
从今天开始我们进入新的一个大方向了,改善深层神经网络:超参数调试、正则化以及优化,首先进入深度学习的一个新层面,先认识下在深度学习中的数据集的分类。之前可能大家已经了解了神经网络的组成的几个部分,那么我们将继续学习如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行,从而使学习算法在合理时间内完成自我学习。训练,验证,测试集(Train/Dev/Testsets)在
- 吴恩达深度学习-序列模型 3.10触发字监测 + 课程总结
prophet__
今天学习的是触发字检测,这个说起来可能有点学术,但是简单来说就是。hey,siri!然后你的手机就会亮起来,这就是触发字检测。首先,关于触发字检测还处于发展阶段,并没有一个以绝对优势取胜的算法。如果我们想建立一个算法,那么我们首先要知道数据集如何进行标记,如果从简单的结果来想,我们可以在每次完成一次触发字之后的那个时间设置为1,其他时间设置为0。但这样做是有一些问题的,因为大部分时间是不会触发的,
- 深度学习记录--矩阵维数
蹲家宅宅
深度学习记录深度学习矩阵人工智能
如何识别矩阵的维数如下图矩阵的行列数容易在前向和后向传播过程中弄错,故写这篇文章来提醒易错点顺便起到日后查表改错的作用本文仅作本人查询参考(摘自吴恩达深度学习笔记)
- 吴恩达深度学习笔记(36)-神经网络的梯度消失/梯度爆炸
极客Array
梯度消失/梯度爆炸(Vanishing/Explodinggradients)训练神经网络,尤其是深度神经所面临的一个问题就是梯度消失或梯度爆炸,也就是你训练神经网络的时候,导数或坡度有时会变得非常大,或者非常小,甚至于以指数方式变小,这加大了训练的难度。这节课,你将会了解梯度消失或梯度爆炸的真正含义,以及如何更明智地选择随机初始化权重,从而避免这个问题。假设你正在训练这样一个极深的神经网络,为了
- 吴恩达深度学习笔记(45)-Adam 优化算法(Adam optimization)
极客Array
Adam优化算法(Adamoptimizationalgorithm)在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络,时间久了,深度学习圈子里的人开始多少有些质疑全新的优化算法,很多人都觉得动量(Momentum)梯度下降法很好用,很难再想出更好的优化算法。所以RMSprop以及Adam优化算法,就是
- 吴恩达深度学习(六)
带刺的小花_ea97
超参数调整第一课:调整过程调整神经网络的过程包含了对许多不同超参数的设置,那么怎么样为这些参数找到比较合适的设定值呢?准则和系统化进行超参数设置的技巧将帮助你更加快速有效的获得合适的超参数。在深度神经网络训练中,面对大量的超参数,包括学习速率α、动量超参数β1、Adam优化算法中的超参数β2和ε、网络层数以及每层网络中隐藏单元的数量、学习率衰减情况下不可能只有单一的学习率、mini-batch的大
- 2023-11-21时间记录
多喝开水少熬夜
学习计划与实际学习
2023-11-21时间记录期望:学Linux听英语课程深度学习阅读书籍,也可以练练字今天干了什么2023-11-21时间记录8:30(下床)10:00(开始学习)学习输出8:30(下床)洗漱煮蛋,9:45出门10:00(开始学习)10:00-11:30英语听力吴恩达深度学习deeplearning.ai+社交间歇休息:吃午饭+锻炼(走圈25min)14:00-15:30:学Linux-thrif
- 吴恩达深度学习Course1-Week(3)
木心
DeepLearning神经网络深度学习机器学习
吴恩达深度学习Course1-Week(3)文章目录吴恩达深度学习Course1-Week(3)一、什么是神经网络NeuralNetwork?(1)由逻辑回归到神经网络(2)神经网络的符号规定(3)向量化Vectorization(4)向量化后伪编程Programing二、激活函数ActiveFunction(1)常用的四种激活函数(2)四种激活函数的导数Derivatives三、梯度下降法Gra
- 吴恩达深度学习Course1-Week(1)(2)
木心
DeepLearning深度学习神经网络机器学习
吴恩达深度学习Course1-Week(1)(2)文章目录吴恩达深度学习Course1-Week(1)(2)一、影响神经网络的性能的因素二、逻辑回归(logisticregression)中的一些符号(Notation)规定三、逻辑回归中的激活函数四、损失函数(lossfunction)与成本函数(costfunction)五、梯度下降法(GradientDescent)六、前向传播(forwar
- 吴恩达深度学习Course2-Week(1)
木心
DeepLearning深度学习机器学习
吴恩达深度学习Course2-Week(1)文章目录一、Train/Dev/Test二、为什么双边导数的定义精度更高?三、机器学习基本方法BasicRecipeforMachineLearning一、Train/Dev/Test交叉验证集(Holdoutcrossvalidationset/Developmentset)与测试集(Testset)最好是同一分布。在一些情况下,没有测试集也没关系,测
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen