Mahout源码MeanShiftCanopyDriver分析之一初识

如果要先把meanshift算法先跑一遍的话,可以直接使用synthetic_control.data数据来做,把synthetic_control.data 下载赋值到一个文本文件中,然后上传到HDFS文件系统上面,使用下面的命令: bin/hadoop fs -put synthetic_control.data testdata;上传完毕后直接在mahout中运行:bin/mahout org.apache.mahout.clustering.syntheticcontrol.meanshift.Job 即可在终端中看到运行的情况,但是在最后面该程序把所有的数据结果都显示出来了,导致前面的Job信息看不到了,所以我就改变了下程序的某些部分,编写下面的程序,来进行测试:

 

package mahout.fansy.test.meanshift;



import java.io.IOException;



import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.mahout.clustering.conversion.meanshift.InputDriver;

import org.apache.mahout.clustering.meanshift.MeanShiftCanopyDriver;

import org.apache.mahout.common.distance.DistanceMeasure;

import org.apache.mahout.common.distance.EuclideanDistanceMeasure;

import org.apache.mahout.common.kernel.TriangularKernelProfile;



public class TestMeanShift {



	/**

	 * @param args

	 * @throws Exception 

	 */

	public static void main(String[] args) throws Exception {

		testMeanShift();

	}

	

	public static void testMeanShift() throws ClassNotFoundException, IOException, InterruptedException{

		Configuration conf=new Configuration();

		conf.set("mapred.job.tracker", "ubuntu:9001");

	//	Path input=new Path("hdfs://ubuntu:9000/user/test/input/transform/part-r-00000");

		Path input=new Path("hdfs://ubuntu:9000/user/test/input/synthetic_control.data");

		Path realInput=new Path("hdfs://ubuntu:9000/user/test/input/real_input");

		InputDriver.runJob(input, realInput);

		Path output=new Path("hdfs://ubuntu:9000/user/test/output-meanshift");

		DistanceMeasure measure=new EuclideanDistanceMeasure();

		TriangularKernelProfile kernelProfile =new TriangularKernelProfile();

		double t1=47.6;

		double t2=1;

		double convergenceDelta=0.5;

		int maxIterations=10;

		MeanShiftCanopyDriver.run(conf, realInput, output, measure, kernelProfile, t1, t2, convergenceDelta, maxIterations,true,true,false);

	}

}

编译,打包上面的程序,然后在终端中运行:bin/hadoop jar ../../mahout_jar/ClusteringUtils.jar mahout.fansy.test.meanshift.TestMeanShift,然后在终端中即可看到显示的信息,主要的信息粘贴如下:

 

Mahout源码MeanShiftCanopyDriver分析之一初识

由上面的信息可以看到第一个job,只使用了mapper,把600条记录转换为了600个meanshiftcanopy(等下分析);然后进行了3次循环,每次map和reduce的输入记录数都有变化,分别如下:

 

  map-in map_out reduce_in reduce_out
第一次 600 600 600 479
第二次 479 129 129 46
第三次 46 15 15 7

可以看出最后只剩下7个类了,(但是原始数据是6个类的,所以此处的参数还是有待调整的);

 

然后先分析下第一个Job,这个Job就是把原始每条记录都转换为一个meanshiftcanopy,具体代码如下:

InputDriver:

 

Job job = new Job(conf, "Mean Shift Input Driver running over input: " + input);

    job.setOutputKeyClass(Text.class);

    job.setOutputValueClass(ClusterWritable.class);

    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    job.setMapperClass(org.apache.mahout.clustering.conversion.meanshift.InputMapper.class);

    job.setReducerClass(Reducer.class);

    job.setNumReduceTasks(0);

    job.setJarByClass(InputDriver.class);



    FileInputFormat.setInputPaths(job, input);

    FileOutputFormat.setOutputPath(job, output);

org.apache.mahout.clustering.conversion.meanshift.InputMapper:

 

 

protected void map(LongWritable key, Text values, Context context) throws IOException, InterruptedException {

    String[] numbers = SPACE.split(values.toString());

    // sometimes there are multiple separator spaces

    Collection<Double> doubles = Lists.newArrayList();

    for (String value : numbers) {

      if (!value.isEmpty()) {

        doubles.add(Double.valueOf(value));

      }

    }

    // ignore empty lines in input data

    if (!doubles.isEmpty()) {

      Vector point = new DenseVector(doubles.size());

      int index = 0;

      for (Double d : doubles) {

        point.set(index++, d);

      }

      cw.setValue(new MeanShiftCanopy(point, nextCanopyId++, new EuclideanDistanceMeasure()));

      context.write(new Text(), cw);

    }

  }

第一个job相对比较好理解,和前面的数据转换差不多,都是把文本转换为序列文件同时设定key和value的类型。

 

分享,快乐,成长


转载请注明出处:http://blog.csdn.net/fansy1990 




你可能感兴趣的:(Mahout)