- abaqus质量缩放系数取值_ABAQUS-延性损伤模型模拟金属材料断裂
微尘-黄含驰
abaqus质量缩放系数取值
延性损伤模型可以模拟金属材料的拉伸破坏过程。该模型通常结合塑性模型进行分析,常见的延性破环过程如下图所示:如果不设置延性损伤,材料在塑性阶段强度逐渐增加,刚度保持不变;考虑延性损伤模型后,假设材料的强度受到损伤作用的影响,逐渐下降,同时刚度也随着损伤参数D的增加而减小。在使用ABAQUS模拟材料的延性损伤模型时,通常需要输入材料强度下降段的范围,即displacementatfailure。该参数
- mvc
ljh_10e3
Mvc的核心思想将业务逻辑和显示相分离。MVC全名是ModelViewController,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑、数据、界面显示分离的方法组织代码,将业务逻辑聚集到一个部件里面,在改进和个性化定制界面及用户交互的同时,不需要重新编写业务逻辑。MVC被独特的发展起来用于映射传统的输入、处理和输出功能在一个逻辑的
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- 【python学习】使用魔塔社区的模型
前言魔塔社区有很多模型,但是怎么使用呢?刚开始学习python,简单的摸索一下一、新建项目1、创建虚拟环境condacreate-npaddlepython=3.102、激活虚拟环境condaactivatepaddle3、新建项目PyCharn新建一个项目,选择已创建的虚拟环境paddle项目新增models目录二、下载模型打开PyCharm的Terminal,命令行前面有一个(paddle),
- 如何分析用户满意度?这4种常用满意度分析模型,一定要学会
spssau
说到问卷调查,满意度调查算是众多问卷调查类型中应用最广泛的。不论是大小企业,或是政府、机构都可以通过满意度问卷调查了解服务对象的满意程度。比如医院需要了解患者对医护人员服务的满意程度,企业需要了解顾客对自家产品的满意程度及需求,政府需要了解公众的的服务需求等等。本文将介绍4种常用的顾客满意度模型,以及如何使用SPSSAU进行这些模型的建立和分析。1、四分图四分图,又称为四象限图,是一种简单实用的满
- 网络编程7.12
实现2个客户端之间互相聊天服务器要求:使用select模型实现接受多个客户端连接,以及转发消息客户端要求:使用poll模型解决技能够read读取服务器发来的消息,又能够scanf读取键盘输入的信息客户端服务器不允许开启额外线程和进程服务器代码:#include#include#include#include#include#include#include//最大客户端数量#defineMAX_CL
- 趣闲赚是不是骗局,到底能不能够赚钱?
好项目高省
趣闲赚是一款备受关注的赚钱应用,它声称用户可以通过完成任务、看视频、填问卷等方式获得佣金。但是,这个应用真的能让人们赚到钱吗?我们来一起探讨一下。京东密令红包:最爱领红包828红包多多148今天给大家分享我长期在做的副业,也在这里赚到人生第3桶金!高省APP佣金高,资质靠谱,各大应用市场均可搜索使用。【高省】高省app是杭州长孚科技有限公司旗下一款新开发电商导购应用,为用户打造一个集成电商购物优惠
- ONNX模型使用指南:从零开始掌握跨领域模型部署
ONNX模型使用指南:从零开始掌握跨领域模型部署ONNX模型作为一种开放式的神经网络交换格式,已成为AI模型部署的行业标准。当您获得一个没有使用说明的ONNX模型时,可以通过系统化的分析和部署流程,使其在不同领域发挥作用。本文将详细阐述如何分析模型结构、配置运行环境、准备特定领域输入数据、执行推理并处理结果,同时提供图像分类、自然语言处理、医疗影像分析、金融风控和自动驾驶等领域的具体应用示例,帮助
- Swagger UI:API文档自动生成 - REST接口可视化神器
zhysunny
Java类库java
目录一、SwaggerUI是什么?二、SpringBoot整合SwaggerUI实战1.添加依赖2.基础配置3.编写一个REST控制器4.定义User模型三、启动并访问SwaggerUI四、SwaggerUI的核心功能1.接口可视化展示2.在线测试功能3.模型定义展示五、Swagger注解大全六、高级配置技巧1.添加JWT认证支持2.自定义UI界面3.分组显示不同模块七、SwaggerUI的替代方
- python高并发web框架_Python3中tornado高并发框架
weixin_39788969
python高并发web框架
1.单线程tornado.web:基础web框架模块tornado.ioloop:核心IO循环模块,高效的基础。封装了:1.asyncio协程,异步处理2.epoll模型:水平触发(状态改变就询问,select(),poll()),边缘触发(一直询问,epoll())3.poll模型:I/O多路复用技术4.BSD(UNIX操作系统中的一个分支的总称)的kqueue(kueue是在UNIX上比较高效
- Android 异构计算与 OpenCL/CUDA/OpenVX 的协同方式实战解析
观熵
国产NPU×Android推理优化android人工智能
Android异构计算与OpenCL/CUDA/OpenVX的协同方式实战解析关键词Android异构计算、OpenCL、CUDA、OpenVX、GPU加速、NPU调度、HSA架构、神经网络推理、计算图编排、SoC协同处理、AI芯片编程摘要随着国产SoC平台持续迭代,Android系统中异构计算模式已从传统CPU+GPU并行计算,扩展到集成NPU、DSP、ISP等多核单元的复杂协同体系。在AI推理
- Java安全:SpringBoot项目中Fastjson组件的使用与安全实践
rockmelodies
java安全java安全springboot
前言Fastjson是阿里巴巴开源的一个高性能JavaJSON库,广泛用于Java对象的序列化和反序列化操作。在SpringBoot项目中,Fastjson常被用作JSON处理工具。然而,Fastjson因其高性能而广受欢迎的同时,也因多次爆出的安全漏洞而备受关注。本文将介绍如何在SpringBoot项目中正确使用Fastjson,并讨论相关的安全实践。一、SpringBoot项目中集成Fastj
- Spring AI 函数调用(Function Call)系统设计方案
大树~~
AI应用开发spring人工智能数据库SpringAIFunctionCall
一、系统概述与设计目标1.1核心目标从零构建一个灵活、安全、高效的函数调用系统,使大语言模型能够在对话中调用应用程序中的方法,同时保持良好的开发体验和企业级特性。1.2主要功能需求支持通过注解将普通Java方法标记为可被AI调用的函数自动生成符合LLM要求的函数描述和参数定义安全地解析和执行模型的函数调用请求处理并返回执行结果给模型提供扩展点以支持不同LLM提供商的特定实现1.3设计原则开发便捷性
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- KL散度:信息差异的量化标尺 | 从概率分布对齐到模型优化的核心度量
不对称性、计算本质与机器学习的普适应用本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与数学本质KL散度(Kullback-LeiblerDivergence)用于衡量两个概率分布PPP和QQQ的差异程度,定义为:DKL(P∥Q)=∑x∈XP(x)logP(x)Q(x)(离散形式)D_
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- MLE最大似然估计:数据驱动的概率模型参数推断基石
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法MLE参数估计概率论
从样本中还原未知分布的本质规律本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心思想与数学定义最大似然估计(MaximumLikelihoodEstimation,MLE)是频率学派的参数估计方法,其核心思想为:选择使观测数据出现概率最大的参数值。给定独立同分布样本X={x1,x2,…,xn}
- 卷积神经网络-数据增强
红米煮粥
cnn人工智能神经网络
文章目录一、概述二、数据增强的类别1.裁剪2.翻转和旋转3.随机遮挡4.图像变换5.对transforms的选择操作,使数据增强更灵活三、应用场景四、总结一、概述数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。二、数据增强的类别1.裁剪中心裁剪:transforms
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- 众趣SDK重磅升级:空间物联IOT新视界,赋能实景三维场景深度应用
zhongqu_3dnest
物联网3d点云处理人工智能计算机视觉点云扫描
近日,空间数字孪生云服务行业领导者—众趣科技宣布旗下核心产品云服务平台QverseSDK迎来里程碑式升级!本次升级聚焦行业前沿需求,重磅推出IoT设备监控系统、iframe跨平台页面无缝集成、BI数据智能三大解决方案,旨在将三维空间计算能力转化为更强大、更易用的生产力工具,为企业用户和开发者构建下一代空间数字化应用提供坚实底座。一、IoT空间物联,让设备运行尽在掌控痛点解决:告别传统分散的设备管理
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 【中项第三版】系统集成项目管理工程师 | 第 7 章 软硬件系统集成
Jackilina_Stone
#系统集成项目管理工程师中项第3版软考中级
前言第7章对应的内容选择题和案例分析都可能会进行考查,学习要以教材为准。目录7.1系统集成基础7.2基础设施集成7.2.1弱电工程7.2.2网络集成1传输子系统2交换子系统3网管子系统4安全子系统5服务子系统7.2.3数据中心集成7.3软件集成7.3.1基础软件集成7.3.2应用软件集成7.3.3其他软件集成7.4业务应用集成7.5本章练习7.1系统集成基础软硬件系统集成是以信息的集成为目标,功能
- Java全栈面试实录:从Spring Boot到AI大模型,互联网大厂求职者的技术洗礼
**第一轮提问面试官:小曾,先谈谈你在SpringBoot项目中的缓存实践。小曾:我常用Redis,通过@Cacheable注解实现方法缓存,配置了Redis集群模式。面试官:很好!在电商秒杀场景,如果缓存击穿怎么办?小曾:可以用布隆过滤器或互斥锁解决,但具体实现得看业务...面试官:你提到SpringCloud,能说说服务注册选Consul还是Eureka?小曾:Eureka简单,Consul更
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- HTML——css--盒子模型与布局
盒子:html中任何一个元素如div、span等都可以看作盒子,每个元素本质属性都会存在一些区别而这种现象则被称为盒子模型盒子模型种类1.块级盒子(标签、元素):divullih1~h6独占一行,对宽度高度支持2.内联级盒子:spana不独占一行,对宽度高度不支持3.内联块级盒子:imginput不独占一行,对宽度高度支持4.弹性盒子:不论父级能不能放下子元素,子元素始终横向布局盒子模型分区内容区
- 一场秋雨一场寒
一馨木叶
只顾开花不问秋至一场秋雨一场寒天气预报真准,预报说这几天天气有变化,要降温,这不,小雨从昨天就一直下到现在,感到冷意阵阵袭来,一向白天敞开的窗户要关好,衣服要多穿了,竟然算起什么时候是放暖气的时间。站在窗口望出去,天灰蒙蒙的,给人压抑沉重一般,树叶树枝摇摇晃晃,不知是在抖落雨滴,还是被突如其来的冷不适应地在瑟瑟打颤,地面上的雨水聚集成溪流团团,低洼处积水步调一致地往下水道处涌入,形成光滑的微型水瀑
- Instagram千号矩阵:亚矩阵云手机破解设备指纹检测的终极方案
云云321
矩阵智能手机线性代数
在Instagram的全球化运营中,构建千号矩阵已成为品牌扩大曝光、精准触达用户的核心策略。然而,平台对设备指纹的强监管——通过硬件参数聚类、传感器动态性检测、IP地理一致性校验等200余个维度构建风控模型,使得传统多账号运营面临高封号率、低存活率的双重挑战。亚矩阵云手机通过动态设备指纹重置、智能行为仿真与独立IP池管理三大技术模块,为Instagram千号矩阵提供了安全、高效、低成本的解决方案。
- HTML中的盒子模型
空空kkk
css前端
一、块级盒子(Block-levelBox)1、布局特性:元素在页面中独占一行,前后都会自动换行,形成一个独立的矩形区域2、尺寸控制:支持精确设置宽度(width)和高度(height),即使内容为空也能保持设定的尺寸3、常见元素:结构容器:div文本段落:p标题:h1~h6列表:ul、ol、li表格:table4、默认行为:宽度默认填满父级容器(width:100%)高度由内容自动撑开(heig
- 基于pyQt5为前端实现的智能座椅控制系统,集成了人脸识别、语音合成和座椅记忆功能,为用户提供个性化的座椅调节体验,后期可连接智能座椅。
渴死的鱼仔
qt前端开发语言
智能座椅控制系统:基于PyQt5的个性化解决方案界面描述:一、系统概述基于PyQt5开发的智能座椅控制系统,深度融合人脸识别、语音交互与座椅记忆功能,打造个性化舒适体验。系统通过实时用户识别自动调节座椅参数,后期可无缝对接智能座椅硬件,实现"无感式"智能生活场景。二、核心功能模块1.人脸识别引擎高精度识别:基于Dlib库实现亚毫米级人脸特征提取动态管理:支持多人脸特征存储与实时匹配快速响应:毫秒级
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓