堆排序、桶排序、归并排序

九种经典排序算法详解(冒泡排序,插入排序,选择排序,快速排序,归并排序,堆排序,计数排序,桶排序,基数排序) 

#include
#include
using namespace std;

/* 
 * (最大)堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
void maxHeapDown(int* a, int start, int end)
{
    int c = start;            // 当前(current)节点的位置
    int l = 2*c + 1;        // 左(left)孩子的位置
    int tmp = a[c];            // 当前(current)节点的大小
    for (; l <= end; c=l,l=2*l+1)
    {
        // "l"是左孩子,"l+1"是右孩子
        if ( l < end && a[l] < a[l+1])
            l++;        // 左右两孩子中选择较大者,即m_heap[l+1]
        if (tmp >= a[l])
            break;        // 调整结束
        else            // 交换值
        {
            a[c] = a[l];
            a[l]= tmp;
        }
    }
}

/*
 * 堆排序(从小到大)
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     n -- 数组的长度
 */
void heapSortAsc(int* a, int n)
{
    int i,tmp;

    // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
    for (i = n / 2 - 1; i >= 0; i--)
        maxHeapDown(a, i, n-1);

    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (i = n - 1; i > 0; i--)
    {
        // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
        tmp = a[0];
        a[0] = a[i];
        a[i] = tmp;
        // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
        // 即,保证a[i-1]是a[0...i-1]中的最大值。
        maxHeapDown(a, 0, i-1);
    }
}

/* 
 * (最小)堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
void minHeapDown(int* a, int start, int end)
{
    int c = start;            // 当前(current)节点的位置
    int l = 2*c + 1;        // 左(left)孩子的位置
    int tmp = a[c];            // 当前(current)节点的大小
    for (; l <= end; c=l,l=2*l+1)
    {
        // "l"是左孩子,"l+1"是右孩子
        if ( l < end && a[l] > a[l+1])
            l++;        // 左右两孩子中选择较小者
        if (tmp <= a[l])
            break;        // 调整结束
        else            // 交换值
        {
            a[c] = a[l];
            a[l]= tmp;
        }
    }
}

/*
 * 堆排序(从大到小)
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     n -- 数组的长度
 */
void heapSortDesc(int* a, int n)
{
    int i,tmp;

    // 从(n/2-1) --> 0逐次遍历每。遍历之后,得到的数组实际上是一个最小堆。
    for (i = n / 2 - 1; i >= 0; i--)
        minHeapDown(a, i, n-1);

    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (i = n - 1; i > 0; i--)
    {
        // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最小的。
        tmp = a[0];
        a[0] = a[i];
        a[i] = tmp;
        // 调整a[0...i-1],使得a[0...i-1]仍然是一个最小堆。
        // 即,保证a[i-1]是a[0...i-1]中的最小值。
        minHeapDown(a, 0, i-1);
    }
}

int main()
{
    int i;
    int a[] = {20,30,90,40,70,110,60,10,100,50,80};
    int ilen = (sizeof(a)) / (sizeof(a[0]));

    cout << "before sort:";
    for (i=0; i
/*
* 桶排序
*
* 参数说明:
*     a -- 待排序数组
*     n -- 数组a的长度
*     max -- 数组a中最大值的范围
*/
void bucketSort(int* a, int n, int max)
{
	int i, j;
	int *buckets;

	if (a == NULL || n<1 || max<1)
		return;

	// 创建一个容量为max的数组buckets,并且将buckets中的所有数据都初始化为0。
	if ((buckets = new int[max]) == NULL)
		return;
	memset(buckets, 0, max*sizeof(int));

	// 1. 计数
	for (i = 0; i < n; i++)
		buckets[a[i]]++;

	// 2. 排序
	for (i = 0, j = 0; i < max; i++)
	while ((buckets[i]--) >0)
		a[j++] = i;

	delete[] buckets;
}
/**
 * 归并排序
 */

#include 
using namespace std;

/*
 * 将一个数组中的两个相邻有序区间合并成一个
 *
 * 参数说明:
 *     a -- 包含两个有序区间的数组
 *     start -- 第1个有序区间的起始地址。
 *     mid   -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
 *     end   -- 第2个有序区间的结束地址。
 */
void merge(int* a, int start, int mid, int end)
{
    int *tmp = new int[end-start+1];    // tmp是汇总2个有序区的临时区域
    int i = start;            // 第1个有序区的索引
    int j = mid + 1;        // 第2个有序区的索引
    int k = 0;                // 临时区域的索引

    while(i <= mid && j <= end)
    {
        if (a[i] <= a[j])
            tmp[k++] = a[i++];
        else
            tmp[k++] = a[j++];
    }

    while(i <= mid)
        tmp[k++] = a[i++];

    while(j <= end)
        tmp[k++] = a[j++];

    // 将排序后的元素,全部都整合到数组a中。
    for (i = 0; i < k; i++)
        a[start + i] = tmp[i];

    delete[] tmp;
}

/*
 * 归并排序(从上往下)
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     start -- 数组的起始地址
 *     endi -- 数组的结束地址
 */
void mergeSortUp2Down(int* a, int start, int end)
{
    if(a==NULL || start >= end)
        return ;

    int mid = (end + start)/2;
    mergeSortUp2Down(a, start, mid); // 递归排序a[start...mid]
    mergeSortUp2Down(a, mid+1, end); // 递归排序a[mid+1...end]

    // a[start...mid] 和 a[mid...end]是两个有序空间,
    // 将它们排序成一个有序空间a[start...end]
    merge(a, start, mid, end);
}


/*
 * 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组;
 *             将"每2个相邻的子数组" 进行合并排序。
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     len -- 数组的长度
 *     gap -- 子数组的长度
 */
void mergeGroups(int* a, int len, int gap)
{
    int i;
    int twolen = 2 * gap;    // 两个相邻的子数组的长度

    // 将"每2个相邻的子数组" 进行合并排序。
    for(i = 0; i+2*gap-1 < len; i+=(2*gap))
    {
        merge(a, i, i+gap-1, i+2*gap-1);
    }

    // 若 i+gap-1 < len-1,则剩余一个子数组没有配对。
    // 将该子数组合并到已排序的数组中。
    if ( i+gap-1 < len-1)
    {
        merge(a, i, i + gap - 1, len - 1);
    }
}

/*
 * 归并排序(从下往上)
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     len -- 数组的长度
 */
void mergeSortDown2Up(int* a, int len)
{
    int n;

    if (a==NULL || len<=0)
        return ;

    for(n = 1; n < len; n*=2)
        mergeGroups(a, len, n);
}

int main()
{
    int i;
    int a[] = {80,30,60,40,20,10,50,70};
    int ilen = (sizeof(a)) / (sizeof(a[0]));

    cout << "before sort:";
    for (i=0; i

 

你可能感兴趣的:(C++)