2021最新完整计算机视觉CV课程

任务1:机器学习、深度学习简介.mp4
任务200:SSD解码的实现.mp4
任务201:帮助函数IoU, 坐标转换, SSD损失函数, Non-Max-Suppression的实现.mp4
任务202:二值化神经网络的简介.mp4
任务203:二值化网络的前向后向传播, 梯度计算原理.mp4
任务204:二值化网络的训练算法.mp4
任务205:二值化网络的实验结果.mp4
任务206:二值化全连接网络的代码讲解.mp4
任务207:DropoutNoScale层的实现.mp4
任务208:BinaryDense层的实现.mp4
任务209:二值化卷积神经网络的代码讲解.mp4
任务20:直播答疑.mp4
任务210:项目作业要求.mp4
任务211:神经网络在实际应用中面临的挑战, 轻量级深度神经网络的必要性.mp4
任务212:MobileNet, Depthwise Seperable Convolution的原理计算量分析.mp4
任务213:ShuffleNet, Group Convolution, Channel Shuffle的原理.mp4
任务214:EffNet, Spatial Seperable Convolution的原理计算量分析和实验效果.mp4
任务215:lightweight-network答疑时间.mp4
任务216:回顾EffNet的原理.mp4
任务217:EffNet的代码讲解.mp4
任务218:One-Shot Learning 的意义和工作原理.mp4
任务219:用于One-Shot Learning 的Siamese 深度神经网络的介绍.mp4
任务21:自动驾驶方向盘预测论文分析.mp4
任务220:Siamese 深度神经网络的实验和结果分析.mp4
任务221:Transposed Convolution 的应用, 算法回顾, 以及使用矩阵乘法实现.mp4
任务222:Transposed Convolution 的梯度推导.mp4
任务223:将卷积核转换为Toeplitz Matrix用于矩阵乘法实现Transposed.mp4
任务224:同学对课程的效果反馈调查.mp4
任务225:使用 Siamese 网络做门禁卡系统的入门介绍, 数据集的介绍.mp4
任务226:PyTorch 基础教程.mp4
任务227:Siamese One-Shot learning 知识回顾.mp4
任务228:使用 PyTorch torchvision 库高效读取数据.mp4
任务229:使用 PyTorch 定义 Siamese 网络结构.mp4
任务22:使用PyCharm Keras建立深度网络模型.mp4
任务230:使用 PyTorch 写训练网络的代码.mp4
任务231:使用 PyTorch 写测试网络的代码.mp4
任务23:数据预处理 数据增强.mp4
任务24:建立BatchGenerator高效读取数据.mp4
任务25:训练网络 保存训练的中间过程数据.mp4
任务26:查看网络训练过程 判断网络是否过拟合 欠拟合.mp4
任务27:神经网络分类问题的经典数据(集鸢尾花数据集)介绍,神经网络Python库Keras的介绍.mp4
任务28:使用Pandas读取鸢尾花数据集, 使用LabelEncoder对类别标签进行编码.mp4
任务29:使用Keras创建一个用于鸢尾花分类识别的神经网络.mp4
任务2:深度学习的发展历史.mp4
任务30:训练用于鸢尾花分类的神经网络 解读训练输出的日志 了解如何评价神经网络的性能.mp4
任务31:神经网络数学原理(1): 神经网络的结点,权值,激活函数.mp4
任务32:神经网络数学原理(2): 神经网络的前馈(Feed Forward)算法.mp4
任务33:神经网络数学原理(3):神经网络的前馈(Feed Forward)算法续,Softmax层的数值问题.mp4
任务34:神经网络数学原理(4):神经网络BP(误差反向传播)算法.mp4
任务35:神经网络数学原理(5):神经网络BP(误差反向传递)算法续.mp4
任务36:神经网络数学原理(6):手动演算神经网络BP算法(误差向后传递).mp4
任务37:神经网络数学原理(7):手动演算神经网络BP算法(误差向后传递)续.mp4
任务38:Neural.Network.Loss-直播01.mp4
任务39:Neural.Network.Loss-直播02.mp4
任务3:现代深度学习的典型例子.mp4
任务40:Neural.Network.Loss-直播03.mp4
任务41:梯度消亡.mp4
任务42:梯度消亡问题分析.mp4
任务43:梯度消亡解决方案.mp4
任务44:过拟合.mp4
任务45:DropOut 训练.mp4
任务46:正则化.mp4
任务47:最大范数约束 神经元的初始化.mp4
任务48:作业讲解与答疑-01.mp4
任务49:作业讲解与答疑-02.mp4
任务4:深度学习在计算机视觉中的应用.mp4
任务50:为什么需要递归神经网络?.mp4
任务51:递归神经网络介绍.mp4
任务52:语言模型.mp4
任务53:RNN的深度.mp4
任务54:梯度爆炸和梯度消失.mp4
任务55:Gradient Clipping.mp4
任务56:LSTM的介绍.mp4
任务57:LSTM的应用.mp4
任务58:Bi-Directional LSTM.mp4
任务59:Gated Recurrent Unit.mp4
任务5:深度学习的总结.mp4
任务60:机器翻译.mp4
任务61:Multimodal Learning.mp4
任务62:Seq2Seq模型.mp4
任务63:回顾RNN与LSTM.mp4
任务64:Attention for Image Captioning.mp4
任务65:Attention for Machine Translation.mp4
任务66:Self-Attention.mp4
任务67:Attention总结.mp4
任务68:neural network optimizer直播-01.mp4
任务69:neural network optimizer直播-02.mp4
任务6:开发环境的配置, Python, Numpy, Keras入门教程.mp4
任务70:neural network optimizer直播-03.mp4
任务71:项目介绍.mp4

任务72:看图说话任务一-01.mp4

任务73:看图说话任务一-02.mp4

任务74:看图说话任务一-03.mp4

任务75:任务介绍.mp4

任务76:如何实现 load_img_as_np_array 这个函数.mp4

任务77:如何实现“load_vgg16_model”函数.mp4

任务78:如何实现“extract_features”函数.mp4

任务79:创建Tokenizer01.mp4

任务7:GPU驱动程序安装.mp4

任务80:创建Tokenizer02.mp4

任务81:产生模型需要的输入数据01.mp4

任务82:产生模型需要的输入数据02.mp4

任务83:任务的概述.mp4

任务84:Input Embedding和Dropout层介绍.mp4

任务85:LSTM Add层的介绍.mp4

任务86:如何训练模型.mp4

任务87:如何使用深度神经网络模型做预测 产生标题 完成generate_caption函数01.mp4

任务88:如何使用深度神经网络模型做预测 产生标题 完成generate_caption函数02.mp4

任务89:如何调用generate_caption函数.mp4

任务8:CUDA的安装.mp4

任务90:如何评价标题生成模型的性能.mp4

任务91:读取和显示数字图像.mp4

任务92:数字图像大小缩放.mp4

任务93:数字图像直方图均衡.mp4

任务94:图像去噪声.mp4

任务95:图像边缘检测.mp4

任务96:图像关键点检测.mp4

任务97:道路行车道检测简介.mp4

任务98:Canny边缘检测.mp4

任务99:霍夫变换用于直线检测.mp4

任务9:cuDNN的安装, Tensorflow, PyTorch的GPU测试.mp4

贪心学院计算机视觉CV课程-吾爱学习资源

你可能感兴趣的:(计算机视觉,深度学习,神经网络)