几种梯度下降的方法

(梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。
  为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。此时线性回归的假设函数为:
hθ(x(i))=θ1x(i)+θ0
hθ(x(i))=θ1x(i)+θ0

其中 i=1,2,…,mi=1,2,…,m 表示样本数。
  对应的目标函数(代价函数)即为:
J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2
J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2

下图为 J(θ0,θ1)J(θ0,θ1) 与参数 θ0,θ1θ0,θ1 的关系的图:

几种梯度下降的方法_第1张图片
1、批量梯度下降(Batch Gradient Descent,BGD)
  批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:
  (1)对目标函数求偏导:
ΔJ(θ0,θ1)Δθj=1m∑i=1m(hθ(x(i))−y(i))x(i)j
ΔJ(θ0,θ1)Δθj=1m∑i=1m(hθ(x(i))−y(i))xj(i)

其中 i=1,2,…,mi=1,2,…,m 表示样本数, j=0,1j=0,1 表示特征数,这里我们使用了偏置项 x(i)0=1x0(i)=1 。
  (2)每次迭代对参数进行更新:
θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))x(i)j
θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

注意这里更新时存在一个求和函数,即为对所有样本进行计算处理,可与下文SGD法进行比较。
  伪代码形式为:
  repeat{
       θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)jθj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)
      (for j =0,1)
  }

优点:
  (1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
  (2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
  缺点:
  (1)当样本数目 mm 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。
  从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2、随机梯度下降(Stochastic Gradient Descent,SGD)
  随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新。使得训练速度加快。
  对于一个样本的目标函数为:
J(i)(θ0,θ1)=12(hθ(x(i))−y(i))2
J(i)(θ0,θ1)=12(hθ(x(i))−y(i))2

(1)对目标函数求偏导:
ΔJ(i)(θ0,θ1)θj=(hθ(x(i))−y(i))x(i)j
ΔJ(i)(θ0,θ1)θj=(hθ(x(i))−y(i))xj(i)

(2)参数更新:
θj:=θj−α(hθ(x(i))−y(i))x(i)j
θj:=θj−α(hθ(x(i))−y(i))xj(i)

注意,这里不再有求和符号
  伪代码形式为:
  repeat{
    for i=1,…,m{
       θj:=θj−α(hθ(x(i))−y(i))x(i)jθj:=θj−α(hθ(x(i))−y(i))xj(i)
      (for j =0,1)
    }
  }

优点:
  (1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。
  缺点:
  (1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
  (2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
  (3)不易于并行实现。

解释一下为什么SGD收敛速度比BGD要快:
  答:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就能保证能够收敛到一个合适的最小值上了。也就是说,在收敛时,BGD计算了 10×30W10×30W 次,而SGD只计算了 1×30W1×30W 次。

从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3、小批量梯度下降(Mini-Batch Gradient Descent, MBGD)
  小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 ** batch_size** 个样本来对参数进行更新。
  这里我们假设 batchsize=10batchsize=10 ,样本数 m=1000m=1000 。
  伪代码形式为:
  repeat{
    for i=1,11,21,31,…,991{
       θj:=θj−α110∑(i+9)k=i(hθ(x(k))−y(k))x(k)jθj:=θj−α110∑k=i(i+9)(hθ(x(k))−y(k))xj(k)
      (for j =0,1)
    }
  }

优点:
  (1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
  (2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)
  (3)可实现并行化。
  缺点:
  (1)batch_size的不当选择可能会带来一些问题。

batcha_size的选择带来的影响:
  (1)在合理地范围内,增大batch_size的好处:
    a. 内存利用率提高了,大矩阵乘法的并行化效率提高。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
    c. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
  (2)盲目增大batch_size的坏处:
    a. 内存利用率提高了,但是内存容量可能撑不住了。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
    c. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

下图显示了三种梯度下降算法的收敛过程:

这里写自定义目录标题)

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目 Value
电脑 $1600
手机 $12
导管 $1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列 第二列 第三列
第一列文本居中 第二列文本居右 第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPE ASCII HTML
Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
Quotes "Isn't this fun?" “Isn’t this fun?”
Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

你可能感兴趣的:(深度学习,梯度下降的几种方法)