spark 算子例子_spark 算子详解 ------Action 算子介绍

一、无输出的算子

1.foreach 算子

功能:对 RDD 中的每个元素都应用 f 函数操作,无返回值。

源码:

>

/**

* Applies a function f to all elements of this RDD.

*/

def foreach(f: T => Unit): Unit = withScope {

val cleanF = sc.clean(f)

sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at :24

>

scala> rdd1.foreach(x => printf("%d ", x))

1 2 3 4 5 6 7 8 9

2.foreachPartition 算子

功能:该函数和foreach类似,不同的是,foreach是直接在每个partition中直接对iterator执行foreach操作,传入的function只是在foreach内部使用,

而foreachPartition是在每个partition中把iterator给传入的function,让function自己对iterator进行处理(可以避免内存溢出)。

>

简单来说,foreach的iterator是针对的rdd中的元素,而foreachPartition的iterator是针对的分区本身。

源码:

>

/**

* Return a new RDD by applying a function to each partition of this RDD, while tracking the index * of the original partition. * * `preservesPartitioning` indicates whether the input function preserves the partitioner, which

* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.

*/

def mapPartitionsWithIndex[U: ClassTag](

f: (Int, Iterator[T]) => Iterator[U],

preservesPartitioning: Boolean = false): RDD[U] = withScope {

val cleanedF = sc.clean(f)

new MapPartitionsRDD(

this,

(context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),

preservesPartitioning)

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9, 2)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at :24

>

scala> rdd1.foreachPartition(x => printf("%s ", x.size))

4 5

二、输出到 HDFS 等文件系统的算子

1.saveAsTextFile 算子

功能:该函数将数据输出,以文本文件的形式写入本地文件系统或者HDFS等。Spark将对每个元素调用toString方法,将数据元素转换为文本文件中的一行记录。若将文件保存到本地文件系统,那么只会保存在executor所在机器的本地目录。

源码:

>

/**

* Save this RDD as a text file, using string representations of elements.

*/

def saveAsTextFile(path: String): Unit = withScope {

// https://issues.apache.org/jira/browse/SPARK-2075

//

// NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit

// Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`

// in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an

// Ordering for `NullWritable`. That's why the compiler will generate different anonymous

// classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.

//

// Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate

// same bytecodes for `saveAsTextFile`. val nullWritableClassTag = implicitly[ClassTag[NullWritable]]

val textClassTag = implicitly[ClassTag[Text]]

val r = this.mapPartitions { iter =>

val text = new Text()

iter.map { x =>

text.set(x.toString)

(NullWritable.get(), text)

}

} RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)

.saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9, 2)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[26] at parallelize at :24

>

scala> rdd1.saveAsTextFile("file:///opt/app/test/saveAsTextFileTest.txt")

2.saveAsObjectFile 算子

功能:该函数用于将RDD以ObjectFile形式写入本地文件系统或者HDFS等。

源码:

>

/**

* Save this RDD as a SequenceFile of serialized objects.

*/

def saveAsObjectFile(path: String): Unit = withScope {

this.mapPartitions(iter => iter.grouped(10).map(_.toArray))

.map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))

.saveAsSequenceFile(path)

}

示例:

>

scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[40] at parallelize at :24

>

scala> rdd1.saveAsObjectFile("file:///opt/app/test/saveAsObejctFileTest.txt")

3.saveAsHadoopFile 算子

功能:该函数将RDD存储在HDFS上的文件中,可以指定outputKeyClass、outputValueClass以及压缩格式,每个分区输出一个文件。

源码:

>

/**

* Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class

* supporting the key and value types K and V in this RDD.

*

* @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do

* not use output committer that writes data directly.

* There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad

* result of using direct output committer with speculation enabled. */def saveAsHadoopFile(

path: String,

keyClass: Class[_],

valueClass: Class[_],

outputFormatClass: Class[_ <: outputformat _>

conf: JobConf = new JobConf(self.context.hadoopConfiguration),

codec: Option[Class[_ <: compressioncodec none unit="self.withScope">

// Rename this as hadoopConf internally to avoid shadowing (see SPARK-2038).

val hadoopConf = conf

hadoopConf.setOutputKeyClass(keyClass)

hadoopConf.setOutputValueClass(valueClass)

conf.setOutputFormat(outputFormatClass)

for (c

hadoopConf.setCompressMapOutput(true)

hadoopConf.set("mapreduce.output.fileoutputformat.compress", "true")

hadoopConf.setMapOutputCompressorClass(c)

hadoopConf.set("mapreduce.output.fileoutputformat.compress.codec", c.getCanonicalName)

hadoopConf.set("mapreduce.output.fileoutputformat.compress.type",

CompressionType.BLOCK.toString)

}

>

// Use configured output committer if already set

if (conf.getOutputCommitter == null) {

hadoopConf.setOutputCommitter(classOf[FileOutputCommitter])

}

>

// When speculation is on and output committer class name contains "Direct", we should warn

// users that they may loss data if they are using a direct output committer. val speculationEnabled = self.conf.getBoolean("spark.speculation", false)

val outputCommitterClass = hadoopConf.get("mapred.output.committer.class", "")

if (speculationEnabled && outputCommitterClass.contains("Direct")) {

val warningMessage =

s"$outputCommitterClass may be an output committer that writes data directly to " +

"the final location. Because speculation is enabled, this output committer may " +

"cause data loss (see the case in SPARK-10063). If possible, please use an output " +

"committer that does not have this behavior (e.g. FileOutputCommitter)."

logWarning(warningMessage)

}

>

FileOutputFormat.setOutputPath(hadoopConf,

SparkHadoopWriterUtils.createPathFromString(path, hadoopConf))

saveAsHadoopDataset(hadoopConf)

}

示例:

>

val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

rdd1.saveAsHadoopFile("hdfs://192.168.199.201:8020/test",classOf[ClassTag[Text]],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]])

4.saveAsSequenceFile 算子

功能:该函数用于将RDD以Hadoop SequenceFile的形式写入本地文件系统或者HDFS等。

源码:

>

/**

* Output the RDD as a Hadoop SequenceFile using the Writable types we infer from the RDD's key

* and value types. If the key or value are Writable, then we use their classes directly;

* otherwise we map primitive types such as Int and Double to IntWritable, DoubleWritable, etc,

* byte arrays to BytesWritable, and Strings to Text. The `path` can be on any Hadoop-supported

* file system.

*/

def saveAsSequenceFile(

path: String,

codec: Option[Class[_ <: compressioncodec none unit="self.withScope">

def anyToWritable[U

>

// TODO We cannot force the return type of `anyToWritable` be same as keyWritableClass and

// valueWritableClass at the compile time. To implement that, we need to add type parameters to

// SequenceFileRDDFunctions. however, SequenceFileRDDFunctions is a public class so it will be a

// breaking change. val convertKey = self.keyClass != _keyWritableClass

val convertValue = self.valueClass != _valueWritableClass

>

logInfo("Saving as sequence file of type " +

s"(${_keyWritableClass.getSimpleName},${_valueWritableClass.getSimpleName})" )

val format = classOf[SequenceFileOutputFormat[Writable, Writable]]

val jobConf = new JobConf(self.context.hadoopConfiguration)

if (!convertKey && !convertValue) {

self.saveAsHadoopFile(path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)

} else if (!convertKey && convertValue) {

self.map(x => (x._1, anyToWritable(x._2))).saveAsHadoopFile(

path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)

} else if (convertKey && !convertValue) {

self.map(x => (anyToWritable(x._1), x._2)).saveAsHadoopFile(

path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)

} else if (convertKey && convertValue) {

self.map(x => (anyToWritable(x._1), anyToWritable(x._2))).saveAsHadoopFile(

path, _keyWritableClass, _valueWritableClass, format, jobConf, codec)

}

}

示例:

>

scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[38] at parallelize at :24

>

scala> rdd1.saveAsSequenceFile("file:///opt/app/test/saveAsSequenceFileTest1.txt")

5.saveAsHadoopDataset 算子

功能:该函数使用旧的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop JobConf 对象。

源码:

>

/**

* Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for

* that storage system. The JobConf should set an OutputFormat and any output paths required

* (e.g. a table name to write to) in the same way as it would be configured for a Hadoop

* MapReduce job.

*/

def saveAsHadoopDataset(conf: JobConf): Unit = self.withScope {

val config = new HadoopMapRedWriteConfigUtil[K, V](new SerializableJobConf(conf))

SparkHadoopWriter.write(

rdd = self,

config = config)

}

示例:

>

val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

var jobConf = new JobConf()

jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])

jobConf.setOutputKeyClass(classOf[Text])

jobConf.setOutputValueClass(classOf[IntWritable])

jobConf.set("mapred.output.dir","/test/")

rdd1.saveAsHadoopDataset(jobConf)

6.saveAsNewAPIHadoopFile 算子

功能:该函数用于将RDD数据保存到HDFS上,使用新版本Hadoop API。用法基本同saveAsHadoopFile。

源码:

>

/**

* Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`

* (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.

*/

def saveAsNewAPIHadoopFile(

path: String,

keyClass: Class[_],

valueClass: Class[_],

outputFormatClass: Class[_ <: newoutputformat _>

conf: Configuration = self.context.hadoopConfiguration): Unit = self.withScope {

// Rename this as hadoopConf internally to avoid shadowing (see SPARK-2038).

val hadoopConf = conf

val job = NewAPIHadoopJob.getInstance(hadoopConf)

job.setOutputKeyClass(keyClass)

job.setOutputValueClass(valueClass)

job.setOutputFormatClass(outputFormatClass)

val jobConfiguration = job.getConfiguration

jobConfiguration.set("mapreduce.output.fileoutputformat.outputdir", path)

saveAsNewAPIHadoopDataset(jobConfiguration)

}

示例:

>

val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

rdd1.saveAsNewAPIHadoopFile("hdfs://192.168.199.201:8020/test",classOf[Text],classOf[IntWritable],classOf[output.TextOutputFormat[Text,IntWritable]])

7.saveAsNewAPIHadoopDataset 算子

功能:使用新的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop Configuration对象。Conf设置一个OutputFormat和任何需要的输出路径(如要写入的表名),就像为Hadoop MapReduce作业配置的那样。

源码:

>

/**

* Output the RDD to any Hadoop-supported storage system with new Hadoop API, using a Hadoop

* Configuration object for that storage system. The Conf should set an OutputFormat and any

* output paths required (e.g. a table name to write to) in the same way as it would be

* configured for a Hadoop MapReduce job.

*

* @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do

* not use output committer that writes data directly.

* There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad

* result of using direct output committer with speculation enabled.

*/

def saveAsNewAPIHadoopDataset(conf: Configuration): Unit = self.withScope {

val config = new HadoopMapReduceWriteConfigUtil[K, V](new SerializableConfiguration(conf))

SparkHadoopWriter.write(

rdd = self,

config = config)

}

示例:

>

val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

var jobConf = new JobConf()

jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])

jobConf.setOutputKeyClass(classOf[Text])

jobConf.setOutputValueClass(classOf[IntWritable])

jobConf.set("mapred.output.dir","/test/")

rdd1.saveAsNewAPIHadoopDataset(jobConf)

三、输出 scala 集合和数据类型的算子

1.first 算子

功能:返回RDD中的第一个元素,不排序。

源码:

>

/**

* Return the first element in this RDD.

*/

def first(): T = withScope {

take(1) match {

case Array(t) => t

case _ => throw new UnsupportedOperationException("empty collection")

}

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24

>

scala> val rdd2 = rdd1.first()

rdd2: Int = 1

>

scala> print(rdd2)

1

2.count 算子

功能:返回RDD中的元素数量。

源码:

>

/**

* Return the number of elements in the RDD.

*/

def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at :24

>

scala> println(rdd1.count())

9

3.reduce 算子

功能:将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。

源码:

>

/**

* Reduces the elements of this RDD using the specified commutative and

* associative binary operator.

*/

def reduce(f: (T, T) => T): T = withScope {

val cleanF = sc.clean(f)

val reducePartition: Iterator[T] => Option[T] = iter => {

if (iter.hasNext) {

Some(iter.reduceLeft(cleanF))

} else {

None

}

} var jobResult: Option[T] = None

val mergeResult = (index: Int, taskResult: Option[T]) => {

if (taskResult.isDefined) {

jobResult = jobResult match {

case Some(value) => Some(f(value, taskResult.get))

case None => taskResult

}

} } sc.runJob(this, reducePartition, mergeResult)

// Get the final result out of our Option, or throw an exception if the RDD was empty

jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :24

>

scala> val rdd2 = rdd1.reduce((x,y) => x + y)

rdd2: Int = 45

4.collect 算子

功能:将一个RDD以一个Array数组形式返回其中的所有元素。

源码:

>

/**

* Return an array that contains all of the elements in this RDD.

*

* @note This method should only be used if the resulting array is expected to be small, as

* all the data is loaded into the driver's memory.

*/

def collect(): Array[T] = withScope {

val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)

Array.concat(results: _*)

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at :24

>

scala> rdd1.collect

res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

5.take 算子

功能:返回一个包含数据集前n个元素的数组(从0下标到n-1下标的元素),不排序。

源码:

>

/**

* Take the first num elements of the RDD. It works by first scanning one partition, and use the

* results from that partition to estimate the number of additional partitions needed to satisfy

* the limit.

*

* @note This method should only be used if the resulting array is expected to be small, as

* all the data is loaded into the driver's memory.

*

* @note Due to complications in the internal implementation, this method will raise

* an exception if called on an RDD of `Nothing` or `Null`.

*/

def take(num: Int): Array[T] = withScope {

val scaleUpFactor = Math.max(conf.getInt("spark.rdd.limit.scaleUpFactor", 4), 2)

if (num == 0) {

new Array[T](0)

} else {

val buf = new ArrayBuffer[T]

val totalParts = this.partitions.length

var partsScanned = 0

while (buf.size < num && partsScanned < totalParts) {

// The number of partitions to try in this iteration. It is ok for this number to be

// greater than totalParts because we actually cap it at totalParts in runJob. var numPartsToTry = 1L

val left = num - buf.size

if (partsScanned > 0) {

// If we didn't find any rows after the previous iteration, quadruple and retry.

// Otherwise, interpolate the number of partitions we need to try, but overestimate // it by 50%. We also cap the estimation in the end. if (buf.isEmpty) {

numPartsToTry = partsScanned * scaleUpFactor

} else {

// As left > 0, numPartsToTry is always >= 1

numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt

numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)

}

}

val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)

val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

>

res.foreach(buf ++= _.take(num - buf.size))

partsScanned += p.size

}

>

buf.toArray

}

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at :24

>

scala> val rdd2 = rdd1.take(3)

rdd2: Array[Int] = Array(1, 2, 3)

6.top 算子

功能:从按降序排列的RDD中获取前N个元素,或者有可选的key函数决定顺序,返回一个数组。

源码:

>

/**

* Returns the top k (largest) elements from this RDD as defined by the specified

* implicit Ordering[T] and maintains the ordering. This does the opposite of

* [[takeOrdered]]. For example:

* {{{

* sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)

* // returns Array(12)

*

* sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)

* // returns Array(6, 5)

* }}}

*

* @note This method should only be used if the resulting array is expected to be small, as

* all the data is loaded into the driver's memory.

*

* @param num k, the number of top elements to return

* @param ord the implicit ordering for T

* @return an array of top elements

*/def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {

takeOrdered(num)(ord.reverse)

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at :24

>

scala> val rdd2 = rdd1.top(3)

rdd2: Array[Int] = Array(9, 8, 7)

7.takeOrdered 算子

功能:返回RDD中前n个元素,并按默认顺序排序(升序)或者按自定义比较器顺序排序。

源码:

>

/**

* Returns the first k (smallest) elements from this RDD as defined by the specified

* implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].

* For example:

* {{{

* sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)

* // returns Array(2)

*

* sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)

* // returns Array(2, 3) * }}}

*

* @note This method should only be used if the resulting array is expected to be small, as

* all the data is loaded into the driver's memory.

*

* @param num k, the number of elements to return

* @param ord the implicit ordering for T

* @return an array of top elements

*/def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {

if (num == 0) {

Array.empty

} else {

val mapRDDs = mapPartitions { items =>

// Priority keeps the largest elements, so let's reverse the ordering.

val queue = new BoundedPriorityQueue[T](num)(ord.reverse)

queue ++= collectionUtils.takeOrdered(items, num)(ord)

Iterator.single(queue)

}

if (mapRDDs.partitions.length == 0) {

Array.empty

} else {

mapRDDs.reduce { (queue1, queue2) =>

queue1 ++= queue2

queue1

}.toArray.sorted(ord)

}

}}

示例:

>

scala> val rdd1 = sc.makeRDD(Seq(5,4,2,1,3,6))

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at makeRDD at :24

>

scala> val rdd2 = rdd1.takeOrdered(3)

rdd2: Array[Int] = Array(1, 2, 3)

8.aggregate 算子

功能:aggregate函数将每个分区里面的元素进行聚合(seqOp),然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。

源码:

>

/**

* Aggregate the elements of each partition, and then the results for all the partitions, using

* given combine functions and a neutral "zero value". This function can return a different result

* type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U

* and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are

* allowed to modify and return their first argument instead of creating a new U to avoid memory

* allocation.

*

* @param zeroValue the initial value for the accumulated result of each partition for the

* `seqOp` operator, and also the initial value for the combine results from

* different partitions for the `combOp` operator - this will typically be the

* neutral element (e.g. `Nil` for list concatenation or `0` for summation)

* @param seqOp an operator used to accumulate results within a partition

* @param combOp an associative operator used to combine results from different partitions

*/def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {

// Clone the zero value since we will also be serializing it as part of tasks

var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())

val cleanSeqOp = sc.clean(seqOp)

val cleanCombOp = sc.clean(combOp)

val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)

val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)

sc.runJob(this, aggregatePartition, mergeResult)

jobResult

}

示例:

>

scala> val rdd1 = sc.parallelize(1 to 9, 3)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at parallelize at :24

scala> val rdd2 = rdd1.aggregate((0,0))(

| (acc,number) => (acc._1 + number, acc._2 + 1),

| (par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)

| )

rdd2: (Int, Int) = (45,9)

9.fold 算子

功能:通过op函数聚合各分区中的元素及合并各分区的元素,op函数需要两个参数,在开始时第一个传入的参数为zeroValue,T为RDD数据集的数据类型,,其作用相当于SeqOp和comOp函数都相同的aggregate函数。

源码:

>

/**

* Aggregate the elements of each partition, and then the results for all the partitions, using a

* given associative function and a neutral "zero value". The function

* op(t1, t2) is allowed to modify t1 and return it as its result value to avoid object

* allocation; however, it should not modify t2.

*

* This behaves somewhat differently from fold operations implemented for non-distributed

* collections in functional languages like Scala. This fold operation may be applied to

* partitions individually, and then fold those results into the final result, rather than

* apply the fold to each element sequentially in some defined ordering. For functions

* that are not commutative, the result may differ from that of a fold applied to a

* non-distributed collection.

*

* @param zeroValue the initial value for the accumulated result of each partition for the `op`

* operator, and also the initial value for the combine results from different

* partitions for the `op` operator - this will typically be the neutral

* element (e.g. `Nil` for list concatenation or `0` for summation)

* @param op an operator used to both accumulate results within a partition and combine results

* from different partitions */def fold(zeroValue: T)(op: (T, T) => T): T = withScope {

// Clone the zero value since we will also be serializing it as part of tasks

var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())

val cleanOp = sc.clean(op)

val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)

val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult)

sc.runJob(this, foldPartition, mergeResult)

jobResult

}

示例:

>

scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)

rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[13] at parallelize at :24

>

scala> val rdd2 = rdd1.fold(("e", 0))((val1, val2) => { if (val1._2 >= val2._2) val1 else val2})

rdd2: (String, Int) = (d,5)

>

scala> println(rdd2)

(d,5)

10.lookup 算子

功能:该函数对(Key,Value)型的RDD操作,返回指定Key对应的元素形成的Seq。 这个函数处理优化的部分在于,如果这个RDD包含分区器,则只会对应处理K所在的分区,然后返回由(K,V)形成的Seq。 如果RDD不包含分区器,则需要对全RDD元素进行暴力扫描处理,搜索指定K对应的元素

源码:

>

/**

* Return the list of values in the RDD for key `key`. This operation is done efficiently if the

* RDD has a known partitioner by only searching the partition that the key maps to.

*/

def lookup(key: K): Seq[V] = self.withScope {

self.partitioner match {

case Some(p) =>

val index = p.getPartition(key)

val process = (it: Iterator[(K, V)]) => {

val buf = new ArrayBuffer[V]

for (pair

buf += pair._2

}

buf

} : Seq[V]

val res = self.context.runJob(self, process, Array(index))

res(0)

case None =>

self.filter(_._1 == key).map(_._2).collect()

}

}

示例:

>

scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 4), ("a", 5)), 2)

rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[14] at parallelize at :24

>

scala> val rdd2 = rdd1.lookup("a")

rdd2: Seq[Int] = WrappedArray(1, 5)

11.countByKey 算子

功能:用于统计RDD[K,V]中每个K的数量,返回具有每个key的计数的(k,int)pairs的Map。

源码:

>

/**

* Count the number of elements for each key, collecting the results to a local Map.

*

* @note This method should only be used if the resulting map is expected to be small, as

* the whole thing is loaded into the driver's memory.

* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which * returns an RDD[T, Long] instead of a map.

*/

def countByKey(): Map[K, Long] = self.withScope {

self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap

}

示例:

>

scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 4), ("a", 5)), 2)

rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[17] at parallelize at :24

>

scala> val rdd2 = rdd1.countByKey()

rdd2: scala.collection.Map[String,Long] = Map(d -> 1, b -> 1, a -> 2, c -> 1)

你可能感兴趣的:(spark,算子例子)