【摘录】关于从NAND Flash启动的问题

http://blog.chinaunix.net/u2/69674/showart_1212448.html

  用的是S3C2410.见附件start.s 其中关于nand flash启动的那一段一直百思不得其解,按说从NAND FLASH启动时,应该是前4KB映射到NGCS0,其中的代码将NAND中存放的程序拷贝到SDRAM中,但该文件提供的程序好象是先从NAND拷贝128K的代码到ResetEntry开始的地方,即地址为0的地方,然后再从ResetEntry处拷到RAM中,但此时NGCS0好象只有4KB的 RAM区,怎么能存储128K的代码,一直没想通.望高手指点,谢谢!

搞明白了,是两条指令的差别:

LDR r0,=_entry和ADR r0,_entry

前者是在编译的时候按照load address生成的绝对地址,后者反汇编后是相对当前PC寻址,例如在ADS中设置RO地址为0X30000000,那么前者传给r0的值是 0x30000000,而后者传给r0的值要视当前PC而定,一般从NGCS0中启动时,传给r0的值就是0。

amsung S3C2410支持Nor Flash和Nand Flash启动,在SBC-2410X上可以通过BOOTSEL跳线设置启动方式:
     |------|
     | 。。 |      boot from nand flash
     |------|
      。。          boot from nor flash
  注:
  (1) BOOTSEL跳线在"串口"和"usb slave接口"之间
  (2) 两个引脚用"跳线卡"连接,则表示从nand flash启动。拔下"跳线卡"表示从nor flash启动。


椐了解 NOR FLASH 是容量小,速度快,稳定性好,适合做程序存储器。NAND FLASH总容量大,适合做数据存储器。是不能从NAND FLASH启动的,NAND FLASH的读写时序是不能直接由ARM硬件产生的,要读写NAND FLASH是要通过程序来实现的,很明显能看出来的就是NAND FLASH只有8个数据、地址复用的数据地址接口。2410/2440可以直接从NAND FLASH启动的,因为它把NAND前面的4K映射到了SRAM的空间。

首先应该先了解Flash ROM的种类:

NOR FLASH地址线和数据线分开,来了地址和控制信号,数据就出来。

NAND Flash地址线和数据线在一起,需要用程序来控制,才能出数据。

通俗的说,就是光给地址不行,要先命令,再给地址,才能读到NAND的数据。而且都是在一个总线完成的。

结论是:ARM无法从NAND直接启动。除非装载完程序,才能使用NAND Flash。

装载程序只能从mask rom 或者Nor flash.

 

NAND和NOR flash技术 设计师在使用闪存时需要慎重选择

——M-Systems公司 Arie TAL

NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一 统天下的局面。紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR 和NAND闪存。相“flash存储器”经常可以与相“NOR存储器”互换使用。许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。而NAND则是高数据存储密度的理想解决方案。NOR的特点是芯片内执行(XIP, execute In Place),这样应用程序可以直接在flash闪存内运行,不必再把代码读到系统RAM中。NOR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。 NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于flash的管理和需要特殊的系统接口。性能比较flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何对flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。 由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素。

● NOR的读速度比NAND稍快一些。

● NAND的写入速度比NOR快很多。

● NAND的4ms擦除速度远比NOR的5s快。

● 大多数写入操作需要先进行擦除操作。

● NAND的擦除单元更小,相应的擦除电路更少。

接口差别 NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。

NAND 器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。 NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。容量和成本NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。 NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、 Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。 可靠性和耐用性采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。寿命(耐用性) 在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。 位交换所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。 一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用 NAND闪存的时候,同时使用EDC/ECC算法。 这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统 以确保可靠性。 坏块处理 NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。 NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。 易于使用 可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。 由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。

在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。软件支持,当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR 器件在进行写入和擦除操作时都需要MTD。 使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被 Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。 驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。

 

  三星的2410可以从NF启动程序,它会把第一块的前4KB复制到内部SRAM中然后从SRAM执行,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到SDRAM中运行(NF地址不是线性的,程序不能直接运行,必须拷贝到线性RAM中)
  从Nand Flash启动U-BOOT的基本原理
--------------------------------------------------------------------------------------------------------------------------------------------------------------

  前4K的问题

  如果S3C2410被配置成从Nand Flash启动(配置由硬件工程师在电路板设置), S3C2410的Nand Flash控制器有一个特殊的功能,在S3C2410上电后,Nand Flash控制器会自动的把Nand Flash上的前4K数据搬移到CPU的4K内部RAM中,并把0x00000000设置内部RAM的起始地址,CPU从内部RAM的0x00000000位置开始启动。这个过程不需要程序干涉。程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中。

  启动程序的安排

  由于Nand Flash控制器从Nand Flash中搬移到内部RAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2410的核心配置以及把启动代码(U-BOOT)剩余部分搬到RAM中运行。

  u-boot源码不支持从nand flash启动,可是s3c2410支持从Nand flash启动,开发板(sbc-2410x)加电后s3c2410将nand flash的前4k(保存有u-boot的部分功能--拷贝功能--把nand flash中的内容拷贝到SDRAM)拷贝到sram(s3c2410芯片内的sram)。这就需要修改u-boot源码,增加u-boot的功能: 使u-boot在得到执行权后能够将其自身拷贝到开发板上SDRAM中,以便处理器能够执行u-boot。
  Nand Flash的命令、地址、数据都通过I/O口发送,管脚复用,这样做做的好处是,可以明显减少NAND FLASH的管脚数目,将来如果设计者想将NAND FLASH更换为更高密度、更大容量的,也不必改动电路板。

  NAND FLASH不能够执行程序,本人总结其原因如下 :

  1. NAND FLASH本身是连接到了控制器上而不是系统总线上。CPU启动后是要取指令执行的,如果是SROM、NOR FLASH 等之类的,CPU发个地址就可以取得指令并执行,NAND FLASH不行,因为NAND FLASH是管脚复用,它有自己的一套时序,这样CPU无法取得可以执行的代码,也就不能初始化系统了。

   2. NAND FLASH是顺序存取设备,不能够被随机访问,程序就不能够分支或跳转,这样你如何去设计程序。


  U-BOOT 支持ARM、PowerPC等多种架构的处理器,也支持Linux、NetBSD和VxWorks等多种操作系统,主要用来开发嵌入式系统初始化代码bootloader。bootloader是芯片复位后进入操作系统之前执行的一段代码,完成由硬件启动到操作系统启动的过渡,为运行操作系统提供基本的运行环境,如初始化CPU、堆栈、初始化存储器系统等,其功能类似于PC机的BIOS。

【摘录】关于从NAND Flash启动的问题

   NAND闪存工作原理

  S3C2410开发板的NAND闪存由NAND闪存控制器(集成在S3C2410 CPU中)和NAND闪存芯片(K9F1208U0A)两大部分组成。当要访问NAND闪存芯片中的数据时,必须通过NAND闪存控制器发送命令才能完成。所以, NAND闪存相当于S3C2410的一个外设,而不位于它的内存地址区。
  NAND闪存(K9F1208U0A)的数据存储结构分层为:1设备(Device) = 4096 块(Block);1块= 32页/行(Page/row);1页= 528B = 数据块 (512B) + OOB块 (16B)
在每一页中,最后16个字节(又称OOB)在NAND闪存命令执行完毕后设置状态,剩余512个字节又分为前半部分和后半部分。可以通过NAND闪存命令00h/01h/50h分别对前半部、后半部、OOB进行定位,通过NAND闪存内置的指针指向各自的首地址。
  NAND闪存的操作特点为:擦除操作的最小单位是块;NAND闪存芯片每一位只能从1变为0,而不能从0变为1,所以在对其进行写入操作之前一定要将相应 块擦除;OOB部分的第6字节为坏快标志,即如果不是坏块该值为FF,否则为坏块;除OOB第6字节外,通常用OOB的前3个字节存放NAND闪存的硬件 ECC(校验寄存器)码;
   
   从NAND闪存启动U-BOOT的设计思路

  如果S3C2410被配置成从NAND闪存启动,上电后,S3C2410的NAND闪存控制器会自动把NAND闪存中的前4K数据搬移到内部RAM中, 并把0x00000000设置为内部RAM的起始地址, CPU从内部RAM的0x00000000位置开始启动。因此要把最核心的启动程序放在NAND闪存的前4K中。
  由于NAND闪存控制器从NAND闪存中搬移到内部RAM的代码是有限的,所以, 在启动代码的前4K里,必须完成S3C2410的核心配置,并把启动代码的剩余部分搬到RAM中运行。在U-BOOT中, 前4K完成的主要工作就是U-BOOT启动的第一个阶段(stage1)。
  根据U-BOOT的执行流程图,可知要实现从NAND闪存中启动U-BOOT,首先需要初始化NAND闪存,并从NAND闪存中把U-BOOT搬移到RAM中,最后需要让U-BOOT支持NAND闪存的命令操作。
  
   开发环境

  本设计中目标板硬件环境如下:CPU为S3C2410,SDRAM为HY57V561620,NAND闪存为64MB的K9F1208U0A。
  主机软件环境为Redhat9.0、 u-boot-1.1.3、gcc 2.95.3。修改U-BOOT的Makefile,加入:
  wch2410_config : unconfig@./mkconfig $(@:_config=) arm arm920t wch2410 NULL s3c24x0
  即将开发板起名为wch2410,接下来依次进行如下操作:
  mkdir board/wch2410
  cp board/smdk2410 board/wch2410
  mv smdk2410.c wch2410.c
  cp include/configs/smdk2410.h include/configs/wch2410.h
  export PATH=/usr/local/arm/2.95.3/bin:$PATH
  最后执行:
  make wch2410_config
  make all ARCH=arm
  生成u-boot.bin,即通过了测试编译。

  具体设计
  支持NAND闪存的启动程序设计
  因为U-BOOT的入口程序是/cpu/arm920t/start.S,故需在该程序中添加NAND闪存的复位程序,以及实现从NAND闪存中把U-BOOT搬移到RAM中的功能程序。
  首先在/include/configs/wch2410.h中加入CONFIG_S3C2410_NAND_BOOT, 如下:
  #define CONFIG_S3C2410_NAND_BOOT 1      @支持从NAND 闪存中启动
  然后在/cpu/arm920t/start.S中添加
  #ifdef CONFIG_S3C2410_NAND_BOOT
  copy_myself:
  mov r10, lr
  ldr sp, DW_STACK_START         @安装栈的起始地址
  mov fp, #0                     @初始化帧指针寄存器
  bl nand_reset                  @跳到复位C函数去执行,执行NAND闪存复位
  .......
  /*从NAND闪存中把U-BOOT拷贝到RAM*/
  ldr r0, =UBOOT_RAM_BASE        @ 设置第1个参数: UBOOT在RAM中的起始地址
  mov r1, #0x0                   @ 设置第2个参数:NAND闪存的起始地址
  mov r2, #0x20000               @ 设置第3个参数: U-BOOT的长度(128KB)
  bl nand_read_whole             @ 调用nand_read_whole(),把NAND闪存中的数据读入到RAM中
  tst r0, #0x0                   @ 如果函数的返回值为0,表示执行成功
  beq ok_nand_read                @ 执行内存比较,把RAM中的前4K内容与NAND闪存中的前4K内容进行比较, 如果完全相同, 则表示搬移成功。
  其中,nand_reset (),nand_read_whole()被加在/board/wch2410/wch2410.c中。

  支持U-BOOT命令设计
  在U-BOOT下对nand闪存的支持主要是在命令行下实现对nand闪存的操作。对nand闪存实现的命令为:nand info(打印nand Flash信息)、nand device(显示某个nand闪存设备)、nand read(读取nand闪存)、nand write(写nand闪存)、nand erease(擦除nand闪存)、nand bad(显示坏块)等。
  用到的主要数据结构有:struct nand_flash_dev、struct nand_chip。前者包括主要的芯片型号、存储容量、设备ID、I/O总线宽度等信息;后者是具体对NAND闪存进行操作时用到的信息。

  a. 设置配置选项
  修改/include/configs/wch2410.h,主要是在CONFIG_COMMANDS中打开CFG_CMD_NAND选项。定义NAND闪存控制器在SFR区中的起始寄存器地址、页面大小,定义NAND闪存命令层的底层接口函数等。
  b. 加入NAND闪存芯片型号
  在/include/linux/mtd/nand_ids.h中对如下结构体赋值进行修改:
  static struct nand_flash_dev nand_flash_ids[] = {
  ......
  {"Samsung K9F1208U0A", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
  .......
      }
  这样对于该款NAND闪存芯片的操作才能正确执行。
  c. 编写NAND闪存初始化函数
  在/board/wch2410/wch2410.c中加入nand_init()函数。
  void nand_init(void)
  {
    /* 初始化NAND闪存控制器, 以及NAND闪存芯片 */
    nand_reset();
    /* 调用nand_probe()来检测芯片类型 */
    printf ("%4lu MB\n", nand_probe(CFG_NAND_BASE) >> 20);
  }
  该函数在启动时被start_armboot()调用。
  最后重新编译U-BOOT并将生成的u-boot.bin烧入NAND闪存中,目标板上电后从串口输出如下信息:
  U-Boot 1.1.3 (Nov 14 2006 - 11:29:50)
  U-Boot code: 33F80000 -> 33F9C9E4     BSS: -> 33FA0B28
  RAM Configuration:
  Bank #0: 30000000 64 MB
  ## Unknown Flash on Bank 0: ID 0xffff, Size = 0x00000000 = 0 MB
  Flash:     0 kB
  NAND:     64 MB
  In:       serial
  Out:      serial
  Err:      serial
  Hit any key to stop autoboot:     0
  wch2410 #

  结语
  以往将U-BOOT移植到ARM9平台中的解决方案主要针对的是ARM9中的NOR闪存,因为NOR闪存的结构特点致使应用程序可以直接在其内部运行,不 用把代码读到RAM中,移植过程相对简单。从NAND闪存中启动U-BOOT的设计难点在于NAND闪存需要把U-BOOT的代码搬移到RAM中,并要让 U-BOOT支持NAND闪存的命令操作。本文介绍了实现这一设计的思路及具体程序。移植后,U-BOOT在嵌入式系统中运行良好。

  参考文献
  1 杜春雷 . ARM 体系结构与编程 [M]. 北京 : 清华大学出版社, 2003
  2 S3C2410 User's Mannual[Z].Samsung

你可能感兴趣的:(Flash)